Orthogonality of Kerr quasinormal modes Stephen R. Green (AEI Potsdam) with Stefan Hollands and Peter Zimmerman August 2, 2019 “Timelike Boundaries in General Relativistic Evolution Problems” Casa Matemática Oaxaca Mexico � 1
Motivation Mode expansions are useful tools as foundations for nonlinear and variational • studies. E.g., talk by Oleg on modes of global AdS Normal modes of self-adjoint systems are complete and orthonormal. We can project • equations into mode space. “bound states” With outgoing radiation condition imposed at boundaries, obtain quasinormal modes • with � . ω ∈ ℂ “resonance states” Physically relevant boundary conditions for black holes and asymptotically flat spacetimes. L 2 Not in general complete, and not in � . � 2
Motivation Although not complete, for much of • black hole ringdown, quasinormal modes Quasinormal modes dominate the evolution. Late time power law tail Initial pulse Would like to develop perturbation theory in terms of quasinormal modes. Credit: Nollert (1999) Possible applications: • Near-extreme Kerr • Superradiant instability of massive fields in Kerr • Kerr-AdS • � 3
� Summary of results Main development: inner product � bilinear form ⟶ • Consider perturbations of a background Kerr spacetime. We define a symmetric bilinear form � on Weyl scalars (complex linear in both entries) with the ⟨⟨ ⋅ , ⋅ ⟩⟩ following properties: the time-evolution operator is symmetric with respect to � , ⟨⟨ ⋅ , ⋅ ⟩⟩ • is finite on quasi-normal modes. ⟨⟨ ⋅ , ⋅ ⟩⟩ • It follows that quasinormal modes with di ff erent frequencies are orthogonal • with respect to � . ⟨⟨ ⋅ , ⋅ ⟩⟩ Our bilinear form is based on earlier work by Leung, Liu and Young (1994) on • quasinormal modes of open systems. � 4
Outline 1. GHP formalism and Teukolsky equation 2. Lagrangian and Hamiltonian 3. Bilinear form 4. Quasinormal mode orthogonality 5. Extras • Relation to Wronskian • Excitation coe ffi cients • Complex scaling regularization 6. Example: Near-extreme Kerr quasinormal mode orthogonality � 5
<latexit sha1_base64="XIZa3Mpa5unrd+HzGnKNgdHyE=">ACnHicbVFbaxNBFJ5db28NOpTEWQwCBVp2F0L+iKW2oeKBiqatJBJwuzM2ezQ2QszZ4Ww5Ff5T/rmv3Gyu2htPTDw8X3fucw5camVxSD45fm3bt+5e29ru3f/wcNHO/3HTya2qIyAsSh0Yc5jbkGrHMaoUMN5aYBnsYaz+OLjRj/7AcaqIv+OqxJmGV/mKlGCo6MW/Z/SziP6njINCe6F+ywxXNTRyKxr9k0tM75mRi1TfEUlOuNr2hoORtwq/J5xDAF5H/cEiUrU0X3O2NH1+wYtLNJ4o4rWGpbJNbqrV/caPLv+Xo1Sa0KT2PFv1BMAyaoDdB2IEB6eJ0b9kshBVBjkKza2dhkGJs5obVELDuscqCyUXF3wJUwdznoGd1c1y1/SlYyRNCuNejrRhr2bUPLN2lcXOmXFM7XVtQ/5Pm1aYvJvVKi8rhFy0jZJKUyzo5lJUKgMC9coBLoxys1KRcrcldPfsuSWE1798E0yiYfhmGH09GBwedevYIs/IC7JHQvKWHJITckrGRHi73gfvxPvkP/eP/c/+qLX6XpfzlPwT/uQ3mKPLMw=</latexit> <latexit sha1_base64="DrJ6sJ5TmwO5CmRBdimQYAUrnI=">ACVXicbVFdSxtBFJ1drY1p1VQf+zIYGixq2N0W2peAtH3oQwVLGxUyMdyd3CSDs7PLzF0hBP+kL8V/4ovQSVylVS/McOac+fjTFpo5SiKroNwafnFysvav3V67X1jcabzWOXl1ZiV+Y6t6cpONTKYJcUaTwtLEKWajxJz7/O9ZMLtE7l5jdNC+xnMDZqpCSQpwYN3eLiG2qCj1LduEs2U8O7R4Xot4Sv9Q4e+CFzJ2faYIEC523xA9/zhB4h+94E9/l3vbeg/1qy/maC6fMfd+g0Yza0aL4UxBXoMmqOho0rsQwl2WGhqQG53pxVFB/BpaU1HhZF6XDAuQ5jLHnoYEMX+2SOWSv/PMkI9y64chvmD/7ZhB5tw0S70zA5q4x9qcfE7rlT63J8pU5SERt4dNCo1p5zPI+ZDZVGSnoA0ip/Vy4nYEGS/4i6DyF+/OSn4Dhpx/ayc+PzYMvVRw19pZtsx0Ws0/sgH1nR6zLJLtiN0EQhMGf4DZcDlfurGFQ9Wyx/yrc+AsX6ayp</latexit> Kerr geometry dt 2 + 4 Mar sin 2 θ ✓ ◆ dtd φ − Σ ∆ dr 2 − Σ d θ 2 − Λ 1 − 2 Mr Σ sin 2 θ d φ 2 ds 2 = Σ Σ ∆ = r 2 + a 2 − 2 Mr, Σ = r 2 + a 2 cos 2 θ , Λ = ( r 2 + a 2 ) 2 − ∆ a 2 sin 2 θ Two commuting continuous symmetries. Generated by Killing vectors • t a = ( ∂ / ∂ t ) a , φ a = ( ∂ / ∂ ϕ ) a � Discrete � — � reflection symmetry � J : ( t , r , θ , ϕ ) → ( − t , r , θ , − ϕ ) t ϕ • Acting by the push-forward on tensors, � anti-commutes as an operator with J symmetries, � . £ t J = − J £ t , £ φ J = − J £ φ � 6
<latexit sha1_base64="3CVgrO5XExfyU+0+BtzcqNKNKQ4=">ACVnicbVFdaxQxFM1Mra3r16iPfQkuglC6zGwF+yIUfHBhwpuW9isw53snTY0yYzJndJlmD/ZvuhP8UWa/RDs1gOBwzncpOTotbKU5r+iuKNB5sPt7Yf9R4/efrsefLi5bGvGidxJCtdudMCPGplcUSKNJ7WDsEUGk+Ki09z/+QSnVeV/UazGicGzqwqlQKUp4YQXhFrfjS5eJKcYE/AMXdXYqV9Ie1yUDmRb7/7o2mH7Xe4+sc+O7fzN4yIwpw3KwFTQ50k8H6QL8PslWpM9WOMqTazGtZGPQktTg/ThLa5q04EhJjV1PNB5rkBdwhuNALRj0k3ZRS8fBGXKy8qFY4kv1H8nWjDez0wRkgbo3K97c/F/3rih8mDSKls3hFYuF5WN5lTxecd8qhxK0rNAQDoV7srlOYSCKPxEL5SQrT/5PjkeDrL9wfDru/7hx1Ud2yHvWZvWcbes0P2mR2xEZPshv2O4mgj+hn9iTfjrWU0jlYzr9gdxMktMK+zg=</latexit> <latexit sha1_base64="G7XAwJZFithaC5pBzvlxOfvI7Og=">AB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZdFN+Kqgn1AE8LNdNIOnUzCzESopV/ixoUibv0Ud/6NkzYLbT0wcDjnXu6ZE6acKe0431ZpbX1jc6u8XdnZ3duv2geHZVktA2SXgieyEoypmgbc0p71UohDTrvh+Cb3u49UKpaIBz1JqR/DULCIEdBGCuyqF4MeEeD4LvBA6cCuOXVnDrxK3ILUIFWYH95g4RkMRWacFCq7zqp9qcgNSOczipepmgKZAxD2jdUQEyVP50Hn+FTowxwlEjzhMZz9fGFGKlJnFoJvOYatnLxf+8fqajK3/KRJpKsjiUJRxrBOct4AHTFKi+cQIJKZrJiMQALRpquKcFd/vIq6Tq7nm9cX9Ra14XdZTRMTpBZ8hFl6iJblELtRFBGXpGr+jNerJerHfrYzFasoqdI/QH1ucPYdKS6A=</latexit> <latexit sha1_base64="SzyVJmLGSneHCfAbgvXGqOj9/o=">ACWnicbVFNbxMxEPUu0I+UjwC9cbGIkDigaLdUao8VHOiBQ5BIWykO0ax3NrHqtTf2bEu0yp/kgpD4K0h1kWiLSNZen7z3th+ziqtPCXJryh+8PDR1vbObmfv8ZOnz7rPX5x5WzuJQ2m1dRcZeNTK4JAUabyoHEKZaTzPLj+u+udX6Ly5istKhyXMDWqUBIoUJPuXMxryLlAi7IcqGDN4dvFRcZuL+7eSvYaD9bM9VYkFPTGYFz9prfmoLfqeEz8PzT6YBf40rl+ZKLpno3F8tJt5f0k3Xx+yBtQY+1NZh0f4jcyrpEQ1KD96M0qWjcgCMlNS47ovZYgbyEKY4CNFCiHzfraJb8TWByXlgXliG+Zv91NFB6vyizoCyBZv5ub0X+rzeqTgeN8pUNaGRm4OKWvOQ4SpniuHkvQiAJBOhbtyOQMHksJvdEI6d0n3wdnB/30f/gy2Hv5EMbxw57xV6ztyxlR+yEnbIBGzLJfrI/0Va0Hf2O43g3tI46j1vGS3Kt6/ASkstIk=</latexit> Geroch-Held-Penrose (GHP) formalism • Kerr is Petrov type D � 2 repeated principle null directions. ⟺ ( l a , n a , m a , ¯ m a ) Defines Newman-Penrose null tetrad � aligned with PNDs. • GHP (1973) developed a framework for writing the Einstein equation such that it transforms covariantly with respect to remaining tetrad freedom. η → λ p ¯ η has GHP weights { p, q } λ q η ⇐ ⇒ • Key GHP covariant operators: n b ∇ a l b + p − q Θ a = ∇ a − p + q m b ∇ a m b • Derivative : � ¯ 2 2 L ξ η = £ ξ − p + q n a £ ξ l a + p − q • Lie derivative : m a £ ξ m a ¯ 2 2 • � — � reflection : = ordinary reflection combined with GHP transformation J ∗ t ϕ = GHP prime � 7
<latexit sha1_base64="8dgNUBdnI8EXi+mWYMf3mtZacbs=">ACnicbVC7SgNBFJ2NrxhfUub0SDEImE3CtoITaWEcwDstydzJhszOLjOzQgipbfwVGwtFbP0CO/GSbKFJh64cOace5l7TxBzprRtf1uZldW19Y3sZm5re2d3L79/0FRIgltkIhHsh2AopwJ2tBMc9qOJYUw4LQVDG+mfuBSsUica9HMfVC6AvWYwS0kfz8c0HfI1LRVcOIizMo4RdDQl2A5A49OHMzxfsj0DXiZOSgoRd3Pf7ndiCQhFZpwUKrj2LH2xiA1I5xOcm6iaAxkCH3aMVRASJU3np0ywadG6eJeJE0JjWfq74kxhEqNwsB0hqAHatGbiv95nUT3rwxE3GiqSDzj3oJxzrC01xwl0lKNB8ZAkQysysmA5BAtEkvZ0JwFk9eJs1K2TkvV+4uCtVaGkcWHaETVEQOukRVdIvqIEIekTP6BW9WU/Wi/VufcxbM1Y6c4j+wPr8AQ/wl/o=</latexit> <latexit sha1_base64="5/os5kSmvqUD9JFZfzZ/ySkaSyw=">ACf3icbVFNT+MwEHUCu0BhlwLHvVhUqPSQKilICwckBJc9diUKSHVUOe6ksXA+ZE9WVF/KGeO+yfWSbtS+RjJ0vN7b8aj56hQ0qDvzjuxuaXr1vbO63dvW/f9sHh/cmL7WAkchVrh8jbkDJDEYoUcFjoYGnkYKH6Om21h/+gDYyz+5wXkCY8lkmYyk4WmrSXjAFMY5PGcIzVgyThXfOdJ7LOK6Br01qevVTLfn/emjR15ubRb0O2tadbfUN4ZGxo5GTAtZwmGrLAXn15Rf9Lu+H2/KfoRBCvQIasaTtp/2TQXZQoZCsWNGQd+gWHFNUqhYNFipYGCiyc+g7GFGU/BhFUT04KeWGZK41zbkyFt2PWOiqfGzNPIOlOiXmv1eRn2rjE+CKsZFaUCJlYPhSXimJO68zpVGoQqOYWcKGl3ZWKhGsu0P7Mm0l3QVjVy9VjWjad4H0WH8H9oB+c9Qe/zvXN6uctskPckxOSUB+kmvyiwzJiAjy6uw4h86R67hdt+/6S6vrHqOyJtyL/8BDUXANw=</latexit> <latexit sha1_base64="ZAJOqXSDoDmUXbwS4GDnrt7ptM=">ACbHicbVHLatwFJWdPtLpI9PHoiULh1aZhaZ2pOh7SYQ0k13nUImCYw85loje0TkB5IcGIxX/cPs8gnd5BsqOy60SQ8Ijs6590o6igoptPG8K8fdunf/wcPtR73HT54+2+k/f3Gi81IxPme5zNVZhJpLkfG5EUbys0JxTCPJT6Pzr41/esGVFnl2bDYFD1JMhELhsZKYf8nAE3RrBnK6nu9pCtMEq5gSAstQm8EB0Alj80iWVY1UN6vOYGQ4Q9mMJRiKM/StQp0cgS/xPQme2fAFUiWZvAzmv3y2pv+nG/hnb6tJnu9QDC/sAbey3gLvE7MiAdZmH/kq5yVqY8M0yi1gvfK0xQoTKCSV73aKl5gewcE76wNMOU6Bqw6rhvVWEOfKrsxAq/7dUWGq9SaNbGUTjL7tNeL/vEVp4i9BJbKiNDxjNwfFpQSTQ5M8rITizMiNJciUsHcFtkaFzNj/6dkQ/NtPvktOJmN/fz5MR0cHnVxbJNd8o4MiU8+k0PyjczInDy9lxXjtvnGv3lbvrvr0pdZ2u5yX5B+6H34p8swM=</latexit> <latexit sha1_base64="TZNr+QlPvLcsW4Agxak2FVXmeI=">ACWHicbVFdaxNBFJ1dW9vGj8b6MvFIDSIYTcW9Uo9cW3RmjaQnZd7k7uJkNnP5y5WwhL/qTg/0rfXGSbEFbDwczrkfM2fSivLQfDb8x9tbT/e2d3rPHn67Pl+98XBuS1rI2ksS12ayxQtaVXQmBVruqwMYZ5qukivqz8i2syVpXFGS8qinOcFSpTEtlJSbcEiHLkuUTdnC4Po8qJOhDRD9qdQ2Rpowns+8Nps47mxNjgvAWjuAkwf6dkrZK2od3EH6AaOSGDCEyajbnGDYz4TMEHYCk2wsGwRrwkIQt6YkWo6T7M5qWs6pYKnR2kYVBw3aFhJTctOVFuqUF7hjCaOFpiTjZt1MEt45QpZKVxp2BYq393NJhbu8hTV7kKwd73VuL/vEnN2ae4UVMxVysyirNXAJq5RhqgxJ1gtHUBrl7gpyjgYlu7/ouBDC+09+SM6Hg/D9YPjtqHd80saxK16J1+JQhOKjOBZfxUiMhRS/xK235W17N7wd/y9TanvtT0vxT/wD/4ARuKtlA=</latexit> Teukolsky equation • Perturbations of Kerr described by � or � . Teukolsky (1972) showed that linearized ψ 0 ψ 4 equations decouple and separate. ⇥ ⇤ ρ )( þ 0 − ρ 0 ) − ( ð − 4 τ − ¯ τ 0 )( ð 0 − τ 0 ) − 3 Ψ 2 ( þ − 4 ρ − ¯ ψ 0 = 0 In terms of � (Bini et al, 2002) Θ a g ab ( Θ a + 4 B a )( Θ b + 4 B b ) − 16 Ψ 2 ⇥ ⇤ O ( ψ 0 ) ≡ ψ 0 = 0 B a = − ( ρ n a − τ ¯ m a ) • Resembles equation for charged scalar field Ψ − 4/3 • � satisfies adjoint equation ψ 4 2 ( Ψ − 4 / 3 g ab ( Θ a − 4 B a )( Θ b − 4 B b ) − 16 Ψ 2 O † ( ψ 0 ) = ⇥ ⇤ ψ 4 ) = 0 2 � 8
Recommend
More recommend