optimization and simulation
play

Optimization and Simulation Multi-objective optimization Michel - PowerPoint PPT Presentation

Optimization and Simulation Multi-objective optimization Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique F ed erale de Lausanne M. Bierlaire (TRANSP-OR


  1. Optimization and Simulation Multi-objective optimization Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique F´ ed´ erale de Lausanne M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 1 / 22

  2. Multi-objective optimization Concept Need for minimizing several objective functions. In many practical applications, the objectives are conflicting. Improving one objective may deteriorate several others. Examples Transportation: maximize level of service, minimize costs. Finance: maximize return, minimize risk. Survey: maximize information, minimize number of questions (burden). M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 2 / 22

  3. Multi-objective optimization   f 1 ( x ) . . min x F ( x ) =   .   f P ( x ) subject to x ∈ F ⊆ R n , where F : R n → R p . M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 3 / 22

  4. Definitions Outline Definitions 1 Transformations into single-objective 2 Lexicographic rules 3 Constrained optimization 4 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 4 / 22

  5. Definitions Dominance Dominance Consider x 1 , x 2 ∈ R n . x 1 is dominating x 2 if 1 x 1 is no worse in any objective ∀ i ∈ { 1 , . . . , p } , f i ( x 1 ) ≤ f i ( x 2 ) , 2 x 1 is strictly better in at least one objective ∃ i ∈ { 1 , . . . , p } , f i ( x 1 ) < f i ( x 2 ) . Notation x 1 dominates x 2 : F ( x 1 ) ≺ F ( x 2 ). M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 5 / 22

  6. Definitions Dominance Properties Not reflexive: x ⊀ x Not symmetric: x ≺ y �⇒ y ≺ x Instead: x ≺ y ⇒ y ⊀ x Transitive: x ≺ y and y ≺ z ⇒ x ≺ z Not complete: ∃ x , y : x ⊀ y and y ⊀ x M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 6 / 22

  7. b b b b Definitions Dominance: example f 2 x 1 x 2 3 F ( x 3 ) ≺ F ( x 2 ) 2 F ( x 3 ) ≺ F ( x 1 ) x 3 x 4 F ( x 1 ) �≺ F ( x 4 ) 1 F ( x 4 ) �≺ F ( x 1 ) 0 f 1 0 1 2 3 4 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 7 / 22

  8. Definitions Optimality Pareto optimality The vector x ∗ ∈ F is Pareto optimal if it is not dominated by any feasible solution: ∄ x ∈ F such that F ( x ) ≺ F ( x ∗ ) . Intuition x is Pareto optimal if no objective can be improved without degrading at least one of the others. M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 8 / 22

  9. Definitions Optimality Weak Pareto optimality The vector x ∗ ∈ F is weakly Pareto optimal if there is no x ∈ F such that ∀ i = 1 , . . . , p , f i ( x ) < f i ( x ∗ ) , Pareto optimality P ∗ : set of Pareto optimal solutions WP ∗ : set of weakly Pareto optimal solutions P ∗ ⊆ WP ∗ ⊆ F M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 9 / 22

  10. b b b b Definitions Dominance: example f 2 x 1 x 2 3 2 x 3 : Pareto optimal. x 3 x 4 x 1 , x 3 , x 4 : weakly Pareto 1 optimal. 0 f 1 0 1 2 3 4 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 10 / 22

  11. Definitions Pareto frontier Pareto optimal set P ∗ = { x ∗ ∈ F| ∄ x ∈ F : F ( x ) ≺ F ( x ∗ ) } Pareto frontier PF ∗ = { F ( x ∗ ) | x ∈ P ∗ } M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 11 / 22

  12. Definitions Pareto frontier f 2 7 6 5 F 4 3 2 1 0 f 1 0 1 2 3 4 5 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 12 / 22

  13. Transformations into single-objective Outline Definitions 1 Transformations into single-objective 2 Lexicographic rules 3 Constrained optimization 4 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 13 / 22

  14. Transformations into single-objective Weighted sum Weights For each i = 1 , . . . , p , w i > 0 is the weight of objective i . Optimization p � min w i f i ( x ) . (1) x ∈F i =1 Comments Weights may be difficult to interpret in practice. Generates a Pareto optimal solution. In the convex case, if x ∗ is Pareto optimal, there exists a set of weights such that x ∗ is the solution of (1) M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 14 / 22

  15. Transformations into single-objective Weighted sum: example Train service f 1 : minimize travel time f 2 : minimize number of trains f 3 : maximize number of passengers Definition of the weights Transform each objective into monetary costs. Travel time: use value-of-time. Number of trains: estimate the cost of running a train. Number of passengers: estimate the revenues generated by the passengers. M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 15 / 22

  16. Transformations into single-objective Goal programming Goals For each i = 1 , . . . , p , g i is the “ideal” or “target” objective function defined by the modeler. Optimization � p � � � x ∈F � F ( x ) − g � ℓ = min ℓ | F i ( x ) − g i | ℓ � i =1 Issue Not really optimizing the objectives M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 16 / 22

  17. Lexicographic rules Outline Definitions 1 Transformations into single-objective 2 Lexicographic rules 3 Constrained optimization 4 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 17 / 22

  18. Lexicographic rules Lexicographic optimization Sorted objective Assume that the objectives are sorted from the most important ( i = 1) to the least important ( i = p ). First problem f ∗ 1 = min x ∈F f 1 ( x ) ℓ th problem f ∗ ℓ = min f ℓ ( x ) subject to x ∈ F = f ∗ f i ( x ) i , i = 1 , . . . , ℓ − 1 . M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 18 / 22

  19. Lexicographic rules ε -lexicographic optimization Sorted objective and tolerances Assume that the objectives are sorted from the most important ( i = 1) to the least important ( i = p ). For each i = 1 , . . . , p , ε i ≥ 0 is a tolerance on the objective f i . First problem f ∗ 1 = min x ∈F f 1 ( x ) ℓ th problem f ∗ ℓ = min f ℓ ( x ) subject to ∈ F x ≤ f ∗ f i ( x ) i + ε i , i = 1 , . . . , ℓ − 1 . M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 19 / 22

  20. Constrained optimization Outline Definitions 1 Transformations into single-objective 2 Lexicographic rules 3 Constrained optimization 4 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 20 / 22

  21. Constrained optimization ε -constraints formulation Reference objective and upper bounds Select a reference objective ℓ ∈ { 1 , . . . , p } . Impose an upper bound ε i on each other objective. Constrained optimization min x ∈F f ℓ ( x ) subject to f i ( x ) ≤ ε i , i � = ℓ. Property If a solution exists, it is weakly Pareto optimal. M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 21 / 22

  22. Constrained optimization Conclusion Problem definition Need for trade-offs. Concept of Pareto frontier. Algorithms Heuristics. Most of time driven by problem knowledge. M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 22 / 22

Recommend


More recommend