on the road to dynamical gauge fields in cold atoms
play

On the road to dynamical gauge fields in cold atoms Fred - PowerPoint PPT Presentation

Synthetic SynQS Quantum Systems Kerim Lilo Alexander M Fabin Apoorva Kai Jan Alexander H On the road to dynamical gauge fields in cold atoms Fred Jendrzejewski Jrgen Torsten Valentin Florian Markus Philipp | e c ( x )


  1. Synthetic SynQS Quantum Systems Kerim Lilo Alexander M Fabián Apoorva Kai Jan Alexander H On the road to dynamical gauge fields in cold atoms Fred Jendrzejewski Jürgen Torsten Valentin Florian Markus Philipp

  2. | e ⟩ Ω c ( x ) Ω | r ⟩ | g ⟩ geometric scalar potential Goldman et al. RPP 77 126401 (2014) Jendrzejewski et al. PRA 94 063422 (2016) Lacki et al. PRL 117 233001 (2016)

  3. ̂ ( ̂ a j +1 ) H = − t ∑ j +1 e iaeA j ̂ j e − iaeA j ̂ a † a † a j + ̂ i Gauge field Particle Dean et al.Nature 497, 598 (2013) M. Aidelsburger et al. PRL 111, 185301 (2013)

  4. add a picture of CERN and the definition of charge Simulation of Higgs decay from CMS ψ ( i γ μ D μ − m ) ψ − 1 ℒ QED = ¯ 4 F μν F μν ψ fi ( i γ μ D μ ij − m f ) ψ fi − 1 2 g 2 Tr ( G μν G μν ) ℒ QCD = ∑ ¯ fi

  5. Conserved Conserved = local charges local gauge symmetry div E ( r ) = e ρ ( r )

  6. ̂ Quantum link approach E ∝ L z L E L + ∝ e ieaA eA Wiese, Ann. Phys. 525 777 (2013) S. Chandrasekharan and U.-J. Wiese, Nucl. Phys. B 492 , 455 (1997).

  7. m F = 0 E E E m F = − 1 eA eA eA Stern-Gerlach

  8. m F = 0 m F = − 1 m f = 0 Fraction of m F = 0 m F = − 1

  9. Kasper et al. NJP 19 023030 (2017) ψ ( i γ μ D μ − m ) ψ − 1 ℒ QED = ¯ 4 F μν F μν ( a † n a n +1 ) + M ∑ n a n + χ ∑ − J ∑ L 2 n L − n +1 L + n a n + a † ( − 1) n a † H KS = z , n n n n One-axis twisting Hamiltonian onian @Oberthaler group, Heidelberg

  10. Kasper et al. NJP 19 023030 (2017) ψ ( i γ μ D μ − m ) ψ − 1 ℒ QED = ¯ 4 F μν F μν ( a † n a n +1 ) + χ ∑ − J ∑ + M ∑ L 2 n L − ( − 1) n a † n +1 L + n a n + a † H KS = n a n z , n n n n Particle filled Dirac sea Anti-Particle

  11. Zache et al. Quantum Sci. Technol. 3 034010 (2018) ψ ( i γ μ D μ − m ) ψ − 1 ℒ QED = ¯ 4 F μν F μν ( a † n a n +1 ) + χ ∑ − J ∑ + M ∑ L 2 n +1 L + n a n + a † n L − ( a † n , ↑ a n , ↓ + h . c .) H Wilson = z , n n n n see the talks by Nigel Cooper, Xiong-Jun Liu, Christoph Weitenberg, … more from the Hauke group in weeks ! | 0 ⟩ + ⋯ + | n ⟩

  12. Kasper et al. NJP 19 023030 (2017) ψ ( i γ μ D μ − m ) ψ − 1 ℒ QED = ¯ 4 F μν F μν ( a † n a n +1 ) + χ ∑ − J ∑ + M ∑ L 2 n L − ( − 1) n a † n +1 L + n a n + a † H KS = n a n z , n n n n PhD of Spin-changing Arno Trautmann collisions: 0.1 fraction of 0.05 Li up time 0 4 6 2

  13. Kasper et al. NJP 19 023030 (2017) ( a † n a n +1 ) + χ ∑ − J ∑ + M ∑ L 2 n +1 L + n a n + a † n L − ( − 1) n a † n a n H KS = z , n n n n e − E e + Spontaneous (Schwinger) pair production for large electric fields 2 z , n > 2 M + χ ( L z , n − 1 ) χ L 2 χ L z , n > M

  14. ψ ( i γ μ D μ − m ) ψ − 1 ℒ QED = ¯ 4 F μν F μν Staggered fermions Wilson fermions Fermions |e |g Bosons |e |g Zache et al. QST 3 034010 (2018) Kasper et al. NJP 19 023030 (2017) [G. Eisner]

  15. Supplemental slides

  16. Electric vacuum Platform Refrigeration Dyn Gauge Fields instability e - e - e + e + Wiese, Ann. Phys. 525 777 (2013) [G. Eisner] Zohar et al.,Rep. Prog. Phys. 79 014401 (2016) � 16

Recommend


More recommend