q uantum transport of ultra cold
play

Q UANTUM TRANSPORT OF ULTRA COLD 33400 TALENCE. ATOMS IN OPTICAL - PowerPoint PPT Presentation

LP2N Institut dOptique dAquitaine Q UANTUM TRANSPORT OF ULTRA COLD 33400 TALENCE. ATOMS IN OPTICAL DISORDER Philippe BOUYER Using ultra cold atoms to build a controllable quantum system to simulate other quantum systems. U LTRACOLD ATOMS


  1. LP2N Institut d’Optique d’Aquitaine Q UANTUM TRANSPORT OF ULTRA COLD 33400 TALENCE. ATOMS IN OPTICAL DISORDER Philippe BOUYER

  2. Using ultra cold atoms to build a controllable quantum system to simulate other quantum systems.

  3. U LTRACOLD ATOMS : QUANTUM GAZ AND MATTER WAVE 500 m/s 50 cm/s 1 cm/s

  4. M ONITORING AND IMAGING ULTRACOLD ATOMS ❏ Cooled and trapped atoms can be directly observed with a camera

  5. M ONITORING AND IMAGING ULTRACOLD ATOMS ❏ Cooled and trapped atoms can be directly observed with a camera ❏ Direct imaging of matter wave functions ❏ Accessible time scales (particle velocities of mm/s)

  6. M ONITORING AND IMAGING ULTRACOLD ATOMS ❏ When imaging atoms after they are ejected from the trap, we directly monitor the velocity and P the velocity distribution ( time of flight ).

  7. Q UANTUM TRANSPORT WITH ULTRACOLD ATOMS We can simulate transport and conduction properties of electrons in a solid with atoms : lattice, disorder, gauge fields … e E V I

  8. Q UANTUM TRANSPORT WITH ULTRACOLD ATOMS We can simulate transport and conduction properties of electrons in a solid with atoms : lattice, disorder, gauge fields … e E V I

  9. Q UANTUM TRANSPORT WITH ULTRACOLD ATOMS We can simulate transport and conduction properties of electrons in a solid with atoms : lattice, disorder, gauge fields … ANDERSON LOCALISATION If mean free path smaller than de Broglie wavelength: constructive interference of trajectories returning to origin: localized states: insulator

  10. A NDERSON LOCALIZATION Studied ¡in ¡a ¡wide ¡variety ¡of ¡systems ¡ • Electronic ¡conduc6vity ¡ • Classical ¡waves ¡(since ¡90’) ¡ ¡ • Ultracold ¡atoms ¡(first ¡proposal ¡2003) Texte Billy, J. et al. Nature 453 , 891-894 (2008). Raizen ¡PRL ¡94

  11. D ISORDER FOR ULTRACOLD ATOMS

  12. L ASER SPECKLE : OPTICAL DISORDER

  13. L ASER SPECKLE : OPTICAL DISORDER Start with a low energy BEC (or ultra low temperature coud). Need to keep the atomic velocities low in all directions

  14. L ASER SPECKLE : OPTICAL DISORDER Need to compensate for gravity for long expansion time (1.5 mm/s in 17 ms)

  15. L ASER SPECKLE : OPTICAL DISORDER Ultra-cold atoms 87 Rb BEC, T < 50 nK, E ≈ kHz

  16. M ONITORING AND IMAGING ULTRACOLD ATOMS ❏ When imaging atoms after they are ejected from the trap, we directly monitor the velocity and P the velocity distribution ( time of flight ).

  17. W EAK LOCALIZATION FOR ULTRACOLD ATOMS ❏ A d d i n g a r b i t r a r i l y p l a c e d obstacles that will deflect the atoms. P

  18. W EAK LOCALIZATION FOR ULTRACOLD ATOMS ❏ A d d i n g a r b i t r a r i l y p l a c e d obstacles that will deflect the atoms. P

  19. W EAK LOCALIZATION FOR ULTRACOLD ATOMS ❏ The atoms will have a random walk because of scattering P

  20. W EAK LOCALIZATION FOR ULTRACOLD ATOMS ❏ We observe a transport phenomenon mimicking conventional electrical conductivity (Drude model) P Metall impurity Electrons

  21. W EAK LOCALIZATION FOR ULTRACOLD ATOMS ❏ We observe a transport phenomenon mimicking conventional electrical conductivity (Drude model) P Metall impurity Electrons

  22. W EAK LOCALIZATION FOR ULTRACOLD ATOMS ❏ O b s e r v a t i o n o f e n h a n c e d retroreflection P

  23. TRS INDUCED QUANTUM INTERFERENCES ❏ Observation of weak localisation induced by Time Reversal Symmetry of the atomic paths : coherent back scattering

  24. C OHERENT BACK SCATTERING OF MATTER WAVES

  25. K ILLING AND RECOVERING T IME R EVERSAL S YMMETRY 1 ms

  26. K ILLING AND RECOVERING T IME R EVERSAL S YMMETRY

  27. K ILLING AND RECOVERING T IME R EVERSAL S YMMETRY

  28. K ILLING AND RECOVERING T IME R EVERSAL S YMMETRY

  29. K ILLING AND RECOVERING T IME R EVERSAL S YMMETRY

  30. K ILLING AND RECOVERING T IME R EVERSAL S YMMETRY

  31. K ILLING AND RECOVERING T IME R EVERSAL S YMMETRY

  32. C ONCLUSIONS Observation of weak localisation Time resolved diffusion Time resolved CBS and weak localisation Observation of TRS with ultra cold atoms in disorder It is possible to “kill” and “recover” the time reversal symmetry by changing the atomic trajectories.

  33. Experiments performed in Palaiseau with A. Aspect, V.Josse, P.B. K. Muller, J. Richard, V. Volchkov, V. Denechaud New teams : Cold atom in Bordeaux P.B., S. Bernon, A. Bertoldi, H. Vasquez, J. Zhang, C. Busquet

  34. Nano structured potentials A ¡new ¡setup ¡ Nano-structured ¡for ¡new ¡regime ¡ radiation in ¡2D ¡electron ¡gas ¡ ¡quantum ¡simulation Retro-reflected laser -­‑ ¡From ¡graphene ¡to ¡a ¡topological ¡insulator ¡ -­‑ ¡Atome-­‑surface ¡interaction ¡ -­‑ ¡Casimir ¡Polder ¡with ¡nano-­‑structured ¡surfaces ¡ -­‑ ¡New ¡geometry ¡for ¡the ¡potential ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ -­‑ ¡hexagonal ¡: ¡graphene ¡including ¡on ¡demand ¡impurities ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ -­‑ ¡triangular ¡: ¡Spin ¡liquid ¡physics ¡ Nature 483, 308 (2012) ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ -­‑ ¡exotic ¡: ¡topological ¡insulators ¡ ¡ Collaboration ¡: ¡J.Cayssol -­‑ ¡High ¡energy ¡physics ¡: ¡quantum ¡anti-­‑ferromagnetism ¡

  35. Thank you you are welcome to joint us in Bordeaux 35

Recommend


More recommend