on the maximal perimeter of sections of the cube
play

On the maximal perimeter of sections of the cube Hermann Knig Kiel, - PowerPoint PPT Presentation

On the maximal perimeter of sections of the cube Hermann Knig Kiel, Germany Jena, September 2019 Hermann Knig (Kiel) Sections of the cube Jena, September 2019 1 / 23 Introduction Keith Ball showed that the hyperplane section of the unit


  1. On the maximal perimeter of sections of the cube Hermann König Kiel, Germany Jena, September 2019 Hermann König (Kiel) Sections of the cube Jena, September 2019 1 / 23

  2. Introduction Keith Ball showed that the hyperplane section of the unit n -cube B n ∞ 1 perpendicular to a max := 2 ( 1 , 1 , 0 , . . . , 0 ) has maximal √ ( n − 1 ) -dimensional volume among all hyperplane sections, i.e. for any a ∈ S n − 1 ⊂ R n √ vol n − 1 ( B n ∞ ∩ a ⊥ ) ≤ vol n − 1 ( B n ∞ ∩ a ⊥ max ) = 2 , where a ⊥ is the central hyperplane orthogonal to a . Oleszkiewicz and Pełczyński proved a complex analogue of this result, with the same hyperplane a ⊥ max . Hermann König (Kiel) Sections of the cube Jena, September 2019 2 / 23

  3. Introduction Keith Ball showed that the hyperplane section of the unit n -cube B n ∞ 1 perpendicular to a max := 2 ( 1 , 1 , 0 , . . . , 0 ) has maximal √ ( n − 1 ) -dimensional volume among all hyperplane sections, i.e. for any a ∈ S n − 1 ⊂ R n √ vol n − 1 ( B n ∞ ∩ a ⊥ ) ≤ vol n − 1 ( B n ∞ ∩ a ⊥ max ) = 2 , where a ⊥ is the central hyperplane orthogonal to a . Oleszkiewicz and Pełczyński proved a complex analogue of this result, with the same hyperplane a ⊥ max . Pełczyński asked whether the same hyperplane section is also maximal for intersections with the boundary of the n -cube, i.e. whether for all a ∈ S n − 1 ⊂ R n √ vol n − 2 ( ∂ B n ∞ ∩ a ⊥ ) ≤ vol n − 2 ( ∂ B n ∞ ∩ a ⊥ max ) = 2 (( n − 2 ) 2 + 1 ) . He proved it for n = 3 when vol 1 ( ∂ B 3 ∞ ∩ a ⊥ ) is the perimeter of the quadrangle or hexagon of intersection. Hermann König (Kiel) Sections of the cube Jena, September 2019 2 / 23

  4. Introduction Abbildung: Cubic sections Hermann König (Kiel) Sections of the cube Jena, September 2019 3 / 23

  5. Introduction Notation. Let K ∈ { R , C } , α = 1 1 2 for K = R and α = √ π for K = C . Let || · || ∞ and | · | be the maximum and the Euclidean norm on K n and ∞ := { x ∈ K n | || x || ∞ ≤ α } B n be the n -cube of volume 1 in K n . For K = C , identify C k = R 2 k for volume calculations. For a ∈ K n with | a | = 1 and t ∈ K , the parallel section function A is defined by ∞ ∩ ( a ⊥ + α ta )) , A n − 1 ( a , t ) := vol l ( n − 1 ) ( B n with l = 1 if K = R and l = 2 if K = C . Put A n − 1 ( a ) = A n − 1 ( a , 0 ) . Hermann König (Kiel) Sections of the cube Jena, September 2019 4 / 23

  6. Introduction Notation. Let K ∈ { R , C } , α = 1 1 2 for K = R and α = √ π for K = C . Let || · || ∞ and | · | be the maximum and the Euclidean norm on K n and ∞ := { x ∈ K n | || x || ∞ ≤ α } B n be the n -cube of volume 1 in K n . For K = C , identify C k = R 2 k for volume calculations. For a ∈ K n with | a | = 1 and t ∈ K , the parallel section function A is defined by ∞ ∩ ( a ⊥ + α ta )) , A n − 1 ( a , t ) := vol l ( n − 1 ) ( B n with l = 1 if K = R and l = 2 if K = C . Put A n − 1 ( a ) = A n − 1 ( a , 0 ) . By Ball and Oleszkiewicz-Pełczyński, we have for all a ∈ K n with | a | = 1 √ 2 ) l . A n − 1 ( a ) ≤ A n − 1 ( a max ) = ( Hermann König (Kiel) Sections of the cube Jena, September 2019 4 / 23

  7. Introduction Notation. Let K ∈ { R , C } , α = 1 1 2 for K = R and α = √ π for K = C . Let || · || ∞ and | · | be the maximum and the Euclidean norm on K n and ∞ := { x ∈ K n | || x || ∞ ≤ α } B n be the n -cube of volume 1 in K n . For K = C , identify C k = R 2 k for volume calculations. For a ∈ K n with | a | = 1 and t ∈ K , the parallel section function A is defined by ∞ ∩ ( a ⊥ + α ta )) , A n − 1 ( a , t ) := vol l ( n − 1 ) ( B n with l = 1 if K = R and l = 2 if K = C . Put A n − 1 ( a ) = A n − 1 ( a , 0 ) . By Ball and Oleszkiewicz-Pełczyński, we have for all a ∈ K n with | a | = 1 √ 2 ) l . A n − 1 ( a ) ≤ A n − 1 ( a max ) = ( For a ∈ K n with | a | = 1, define the perimeter of the cubic section by a ⊥ as P n − 2 ( a ) := vol l ( n − 2 ) ( ∂ B n ∞ ∩ a ⊥ ) , l as before. Hermann König (Kiel) Sections of the cube Jena, September 2019 4 / 23

  8. The main result The answer to Pełczyński’s problem for P n − 2 ( a ) := vol l ( n − 2 ) ( ∂ B n ∞ ∩ a ⊥ ) is affirmative. This is a joint result with A. Koldobsky: Theorem 1 2 ( 1 , 1 , 0 , · · · , 0 ) ∈ K n . Then for any a ∈ K n with 1 Let n ≥ 3 and a max := √ | a | = 1 we have P n − 2 ( a ) ≤ P n − 2 ( a max ) , (1) We have √ P n − 2 ( a max ) = 2 (( n − 2 ) 2 + 1 ) , K = R and P n − 2 ( a max ) = 2 π (( n − 2 ) 2 + 1 ) , K = C . Hermann König (Kiel) Sections of the cube Jena, September 2019 5 / 23

  9. An application of the Busemann-Petty type As a consequence of Theorem 1 we find a counterexample to a surface area version of the Busemann-Petty for large dimensions (König, Koldobsky): Theorem 2 For each n ≥ 14 , there exist origin-symmetric convex bodies K , L in R n such that for all a ∈ S n − 1 vol n − 2 ( ∂ K ∩ a ⊥ ) ≤ vol n − 2 ( ∂ L ∩ a ⊥ ) but vol n − 1 ( ∂ K ) > vol n − 1 ( ∂ L ) . Example. Let K = B n ∞ be the unit cube in R n . Let L be the Euclidean ball of radius r in R n so that the perimeters of hyperplane sections of L are all equal to the maximal perimeter of sections of K . Hermann König (Kiel) Sections of the cube Jena, September 2019 6 / 23

  10. An application of the Busemann-Petty type ∞ be the unit cube in R n . Let L be the Euclidean ball of radius r in R n so that Let K = B n √ vol n − 2 ( ∂ K ∩ a ⊥ ) ≤ vol n − 2 ( ∂ K ∩ a ⊥ max ) = 2 (( n − 2 ) 2 + 1 ) = vol n − 2 ( rS n − 2 ) = r n − 2 2 π ( n − 1 ) / 2 , Γ( n − 1 2 ) √ 1 2 + 1 )Γ( n − 1 r = [(( n − 2 ) 2 )] n − 2 . π ( n − 1 ) / ( 2 ( n − 2 )) Hermann König (Kiel) Sections of the cube Jena, September 2019 7 / 23

  11. An application of the Busemann-Petty type ∞ be the unit cube in R n . Let L be the Euclidean ball of radius r in R n so that Let K = B n √ vol n − 2 ( ∂ K ∩ a ⊥ ) ≤ vol n − 2 ( ∂ K ∩ a ⊥ max ) = 2 (( n − 2 ) 2 + 1 ) = vol n − 2 ( rS n − 2 ) = r n − 2 2 π ( n − 1 ) / 2 , Γ( n − 1 2 ) √ 1 2 + 1 )Γ( n − 1 r = [(( n − 2 ) 2 )] n − 2 . π ( n − 1 ) / ( 2 ( n − 2 )) The opposite inequality for the surface areas of K and L happens when ∞ ) = 2 n > vol n − 1 ( rS n − 1 ) = r n − 1 2 π n / 2 vol n − 1 ( ∂ B n 2 ) , Γ( n √ n − 1 1 > π n / 2 2 + 1 )Γ( n − 1 [(( n − 2 ) 2 )] 1 n − 2 2 ) r n − 1 = =: BP ( n ) . n Γ( n n Γ( n π 1 / ( 2 ( n − 2 )) 2 ) Then BP is decreasing in n , with BP ( x 0 ) = 1 for x 0 ≃ 13 . 70, so BP ( n ) < 1 for all n ≥ 14. In the complex case, a similar counterexamples exists for all n ≥ 11. Hermann König (Kiel) Sections of the cube Jena, September 2019 7 / 23

  12. Perimeter formulas and idea of the proof of Theorem 1 For a ∈ K n with | a | = 1 let a ⋆ denote the non-increasing rearrangement of the sequence ( | a k | ) n k = 1 . Then A n − 1 ( a , t ) = A n − 1 ( a ⋆ , | t | ) P n − 2 ( a ) = P n − 2 ( a ⋆ ) . , Thus assume that a = ( a k ) n k = 1 satisfies a 1 ≥ · · · ≥ a n ≥ 0, | a | = 1 and t ≥ 0. Hermann König (Kiel) Sections of the cube Jena, September 2019 8 / 23

  13. Perimeter formulas and idea of the proof of Theorem 1 For a ∈ K n with | a | = 1 let a ⋆ denote the non-increasing rearrangement of the sequence ( | a k | ) n k = 1 . Then A n − 1 ( a , t ) = A n − 1 ( a ⋆ , | t | ) P n − 2 ( a ) = P n − 2 ( a ⋆ ) . , Thus assume that a = ( a k ) n k = 1 satisfies a 1 ≥ · · · ≥ a n ≥ 0, | a | = 1 and t ≥ 0. Then Proposition 1 ∞ n A n − 1 ( a , t ) = 2 � sin ( a k s ) � cos ( ts ) ds , K = R , (2) π a k s k = 1 0 ∞ n A n − 1 ( a , t ) = 1 � � j 1 ( a k s ) J 0 ( ts ) s ds , K = C , (3) 2 k = 1 0 where j 1 ( t ) = 2 J 1 ( t ) sin ( a k s ) and J ν denote the Bessel functions of index ν . If a k = 0 , t a k s and j 1 ( a k s ) have to be read as 1 in formulas (2) and (3) . Hermann König (Kiel) Sections of the cube Jena, September 2019 8 / 23

  14. Perimeter formulas and idea of the proof of Theorem 1 For a ∈ K n with | a | = 1 let a ⋆ denote the non-increasing rearrangement of the sequence ( | a k | ) n k = 1 . Then A n − 1 ( a , t ) = A n − 1 ( a ⋆ , | t | ) P n − 2 ( a ) = P n − 2 ( a ⋆ ) . , Thus assume that a = ( a k ) n k = 1 satisfies a 1 ≥ · · · ≥ a n ≥ 0, | a | = 1 and t ≥ 0. Then Proposition 1 ∞ n A n − 1 ( a , t ) = 2 � sin ( a k s ) � cos ( ts ) ds , K = R , (2) π a k s k = 1 0 ∞ n A n − 1 ( a , t ) = 1 � � j 1 ( a k s ) J 0 ( ts ) s ds , K = C , (3) 2 k = 1 0 where j 1 ( t ) = 2 J 1 ( t ) sin ( a k s ) and J ν denote the Bessel functions of index ν . If a k = 0 , t a k s and j 1 ( a k s ) have to be read as 1 in formulas (2) and (3) . Formula (2) is due to Pólya 1913 and was used by Ball in his proof. Both formulas can be shown by taking the Fourier transform of A n − 1 ( a , · ) , using Fubini’s theorem and taking the inverse Fourier transform. The sin t and j 1 ( t ) functions occur as Fourier t transforms of the interval in R and the disc in C = R 2 , respectively. Hermann König (Kiel) Sections of the cube Jena, September 2019 8 / 23

Recommend


More recommend