lower bounds for maximal matchings and maximal
play

Lower Bounds for Maximal Matchings and Maximal Independent Sets - PowerPoint PPT Presentation

Lower Bounds for Maximal Matchings and Maximal Independent Sets Alkida Balliu Aalto University, Finland Joint work with Sebastian Brandt ETH Zurich Juho Hirvonen Aalto University Dennis Olivetti Aalto University Mikal Rabie LIP6 -


  1. Lower Bounds for Maximal Matchings and Maximal Independent Sets Alkida Balliu Aalto University, Finland

  2. Joint work with Sebastian Brandt · ETH Zurich Juho Hirvonen · Aalto University Dennis Olivetti · Aalto University Mikaël Rabie · LIP6 - Sorbonne University Jukka Suomela · Aalto University 2

  3. Overview Maximal matching Maximal independent set We will talk about lower bounds for solving these problems in the distributed setting 3

  4. Distributed setting Graph = communication network; synchronous rounds; time = number of communication rounds 4

  5. Maximal matching problem Input Output • Matching : edges in the matching do not share a node • Maximality : if we add any other edge in the matching, than it is not a matching anymore • We say that a node is matched : it is an endpoint of an edge in the matching 5

  6. Maximal independent set problem Input Output • Independent set : nodes in the IS do not share an edge • Maximality : if we add any other node in the IS, than it is not independent anymore 6

  7. Two classical graph problems Maximal matching Maximal independent set Easy linear-time centralized algorithm: add edges/nodes until stuck 7

  8. Two classical graph problems Maximal matching Maximal independent set Can be verified locally : if it looks correct everywhere locally, it is also feasible globally Can these problems be solved locally ? 8

  9. Locality = how far do I need to see to produce my own part of the solution? 9

  10. Locality = how far do I need to see to produce my own part of the solution? I will output I will output I will output in out in 10

  11. Locality = how far do I need to see to produce my own part of the solution? Local outputs form a globally consistent solution 11

  12. Warmup: toy example Bipartite graphs & port-numbering model 12

  13. 1 1 2 2 computer output: 1 2 1 2 network with maximal 3 3 3 3 port numbering matching bipartite, 2 2 1 1 2-colored 3 3 23 3 graph 1 2 1 Δ-regular (here Δ = 3) 1 1 1 1 2 3 2 3 2 3 3 2 1 3 1 3 1 3 3 1 2 2 2 2 13

  14. 1 2 Very simple algorithm 1 2 3 3 unmatched white nodes: send proposal to port 1 2 1 3 23 1 1 1 2 3 2 3 1 1 3 3 2 2 14

  15. 1 2 Very simple algorithm 1 2 3 3 unmatched white nodes: send proposal to port 1 2 1 3 black nodes: 23 1 accept the first proposal you get, reject everything else (break ties with port numbers) 1 1 2 3 2 3 1 1 3 3 2 2 15

  16. 1 2 Very simple algorithm 1 2 3 3 unmatched white nodes: send proposal to port 1 2 1 3 black nodes: 23 1 accept the first proposal you get, reject everything else (break ties with port numbers) 1 1 2 3 2 3 1 1 3 3 2 2 16

  17. 1 2 Very simple algorithm 1 2 3 3 unmatched white nodes: send proposal to port 2 2 1 3 23 1 1 1 2 3 2 3 1 1 3 3 2 2 17

  18. 1 2 Very simple algorithm 1 2 3 3 unmatched white nodes: send proposal to port 2 2 1 3 black nodes: 23 1 accept the first proposal you get, reject everything else (break ties with port numbers) 1 1 2 3 2 3 1 1 3 3 2 2 18

  19. 1 2 Very simple algorithm 1 2 3 3 unmatched white nodes: send proposal to port 2 2 1 3 black nodes: 23 1 accept the first proposal you get, reject everything else (break ties with port numbers) 1 1 2 3 2 3 1 1 3 3 2 2 19

  20. 1 2 Very simple algorithm 1 2 3 3 unmatched white nodes: send proposal to port 3 2 1 3 23 1 1 1 2 3 2 3 1 1 3 3 2 2 20

  21. 1 2 Very simple algorithm 1 2 3 3 unmatched white nodes: send proposal to port 3 2 1 3 black nodes: 23 1 accept the first proposal you get, reject everything else (break ties with port numbers) 1 1 2 3 2 3 1 1 3 3 2 2 21

  22. 1 2 Very simple algorithm 1 2 3 3 unmatched white nodes: send proposal to port 3 2 1 3 black nodes: 23 1 accept the first proposal you get, reject everything else (break ties with port numbers) 1 1 2 3 2 3 1 1 3 3 2 2 22

  23. 1 2 Very simple algorithm 1 2 3 3 Finds a maximal matching in O (Δ) communication rounds 2 1 Note: running time does 3 23 not depend on n 1 1 1 2 3 2 3 1 1 3 3 2 2 23

  24. Bipartite maximal matching • Maximal matching in very large 2-colored Δ-regular graphs • Simple algorithm: O (Δ) rounds , independently of n • Is this optimal? • o (Δ) rounds? • O (log Δ) rounds? • 4 rounds?? 24

  25. Big picture Bounded-degree graphs & LOCAL model 25

  26. LOCAL model • Each node has a unique identifier from 1 to poly( n ) 1 17 22 16 21 12 • No bounds on the computational 31 30 8 4 7 29 5 power 10 6 35 19 3 20 33 14 42 34 • No bounds on the bandwidth 24 36 13 18 23 25 27 • Synchronous model 15 40 28 32 26 38 • Everything can be solved in 2 9 44 41 11 Diameter time Strong model — lower bounds widely applicable 26

  27. Maximal matching, LOCAL model, O(f( Δ ) + g(n)) Algorithms: deterministic randomized Lower bounds: deterministic g ( n ) randomized f (Δ) 27

  28. Maximal matching, LOCAL model, O(f( Δ ) + g(n)) Algorithms: Israeli & Itai (1986) log n deterministic randomized O (log n ) randomized Lower bounds: deterministic randomized o (log* n ) impossible log ∗ n Linial (1987, 1992), Naor (1991) 28

  29. log 7 n Hanckowiak et al. (1998) Maximal matching, LOCAL model, log 4 n Hanckowiak et al. (2001) O(f( Δ ) + g(n)) log 3 n Fischer (2017) Algorithms: Israeli & Itai (1986) log n deterministic randomized Lower bounds: deterministic polylog( n ) deterministic randomized log ∗ n Linial (1987, 1992), Naor (1991) 29

  30. log 7 n Hanckowiak et al. (1998) Maximal matching, LOCAL model, log 4 n Hanckowiak et al. (2001) O(f( Δ ) + g(n)) log 3 n Fischer (2017) Algorithms: Israeli & Itai (1986) log n deterministic randomized Lower bounds: deterministic randomized O (Δ + log* n ) deterministic Panconesi & Rizzi (2001) log ∗ n Linial (1987, 1992), Naor (1991) ∆ 30

  31. log 7 n Hanckowiak et al. (1998) Maximal matching, LOCAL model, log 4 n Hanckowiak et al. (2001) O(f( Δ ) + g(n)) log 3 n Fischer (2017) Algorithms: Israeli & Itai (1986) log n deterministic randomized s log n log log n Lower bounds: deterministic randomized Kuhn et al. (2004, 2016) Panconesi & Rizzi (2001) log ∗ n log ∆ Linial (1987, 1992), Naor (1991) ∆ log log ∆ 31

  32. log 7 n Hanckowiak et al. (1998) Maximal matching, LOCAL model, log 4 n Hanckowiak et al. (2001) O(f( Δ ) + g(n)) log 3 n Fischer (2017) Algorithms: Israeli & Itai (1986) log n deterministic randomized s log n O (log Δ + polylog log n ) log log n Lower bounds: deterministic Barenboim et al. log 4 log n (2012, 2016) randomized log 3 log n Fischer (2017) Kuhn et al. (2004, 2016) Panconesi & Rizzi (2001) log ∗ n log ∆ log ∆ Linial (1987, 1992), Naor (1991) ∆ log log ∆ 32

  33. log 7 n Hanckowiak et al. (1998) Maximal matching, LOCAL model, log 4 n Hanckowiak et al. (2001) O(f( Δ ) + g(n)) log 3 n Fischer (2017) Algorithms: Israeli & Itai (1986) log n deterministic randomized s log n log log n Lower bounds: deterministic Barenboim et al. log 4 log n (2012, 2016) randomized log 3 log n Fischer (2017) Kuhn et al. (2004, 2016) Panconesi & Rizzi (2001) log ∗ n log ∆ log ∆ Linial (1987, 1992), Naor (1991) ∆ log log ∆ 33

  34. log 7 n Hanckowiak et al. (1998) Maximal matching, LOCAL model, log 4 n Hanckowiak et al. (2001) O(f( Δ ) + g(n)) log 3 n Fischer (2017) Algorithms: Israeli & Itai (1986) log n deterministic randomized s log n log log n Lower bounds: deterministic Barenboim et al. log 4 log n (2012, 2016) randomized log 3 log n Fischer (2017) O (log Δ + log* n ) ??? Kuhn et al. (2004, 2016) Panconesi & Rizzi (2001) log ∗ n log ∆ log ∆ Linial (1987, 1992), Naor (1991) ∆ log log ∆ 34

  35. log 7 n Hanckowiak et al. (1998) Maximal matching, LOCAL model, log 4 n Hanckowiak et al. (2001) O(f( Δ ) + g(n)) log 3 n Fischer (2017) Algorithms: Israeli & Itai (1986) log n deterministic randomized s log n log log n Lower bounds: deterministic Barenboim et al. log 4 log n (2012, 2016) randomized log 3 log n Fischer (2017) Kuhn et al. ??? (2004, 2016) Panconesi & Rizzi (2001) log ∗ n log ∆ log ∆ Linial (1987, 1992), Naor (1991) ∆ log log ∆ 35

  36. log 7 n Hanckowiak et al. (1998) Maximal matching, LOCAL model, log 4 n Hanckowiak et al. (2001) O(f( Δ ) + g(n)) log 3 n Fischer (2017) Algorithms: Israeli & Itai (1986) log n deterministic randomized s log n log log n Lower bounds: deterministic Barenboim et al. log 4 log n (2012, 2016) randomized log 3 log n Fischer (2017) log log n log log log n Kuhn et al. New (2004, 2016) Panconesi & Rizzi (2001) log ∗ n log ∆ log ∆ Linial (1987, 1992), Naor (1991) ∆ log log ∆ 36

Recommend


More recommend