neutrino fingerprints in compact objects
play

Neutrino Fingerprints in Compact Objects Irene Tamborra Niels Bohr - PowerPoint PPT Presentation

Neutrino Fingerprints in Compact Objects Irene Tamborra Niels Bohr Institute, University of Copenhagen Compact Objects for All February 11, 2020 Neutrinos e Ghostly Abundant Elusive Ideal Messengers E scaping unimpeded,


  1. Neutrino Fingerprints in Compact Objects Irene Tamborra Niels Bohr Institute, University of Copenhagen Compact Objects for All February 11, 2020

  2. Neutrinos ν e Ghostly Abundant ν τ Elusive ν µ

  3. Ideal Messengers E scaping unimpeded, neutrinos carry information about sources not otherwise accessible. Proton Photon Neutrino

  4. Astro-Neutrino Detectors Super-Kamiokande LVD HALO [Hyper-Kamiokande] Borexino Baksan KamLAND SNO+ Km3NeT MicroBooNE NovA [DUNE] IceCube [IceCube-Gen2] Daya Bay [RENO-50, JUNO] Fundamental to combine astrophysical signals from detectors employing different technologies.

  5. Dawn of the Multi-Messenger Era

  6. Core-collapse supernovae explode because of NEUTRINOS! 58 10 neutrinos are emitted

  7. Core-Collapse Supernova Explosion Implosion (Collapse) Neutrinos carry 99% of the 53 released energy (~ 10 erg). neutrino Explosion cooling by diffusion

  8. Detection Frontiers Supernova in our Galaxy (one burst per 40 years). Excellent sensitivity to details. Supernova in nearby Galaxies (one burst per year). Sensitivity to general properties. Beacom & Vagins, PRL 93:171101,2004 Diffuse Supernova Background (one supernova per second). Average supernova emission. Guaranteed signal.

  9. The Next Nearby Supernova (SN 2XXXa) 54 ν e ν e 52 ν x Log (luminosity [erg s -1 ]) 50 GW EM 48 pre-SN ν e 46 SBO 44 plateau 42 40 progenitor 38 9 6 3 0 -2 0 2 4 6 8 Log (time relative to bounce [s]) Figure from Nakamura et al., MNRAS (2016).

  10. Supernova Explosion Mechanism Shock wave forms within the iron core. It dissipates energy dissociating the iron layer. Neutrinos provide energy to the stalled shock wave to start re-expansion. evival”: O shock Accretion rgy to Si sion ar ν ν ν ν n, p Shock wave wave Si Neutron star -neutron star Recent reviews: Janka (2017). Mirizzi, Tamborra et al. (2016).

  11. Fingerprints of the Explosion Mechanism ���� ���� ��� SASI modes 11 M sun IceCube 120 20 M sun ��� 100 Power spectrum ������� � � SASI frequency �������� � � � 80 ��� 60 � � 40 ��� 27 M sun 20 ����� � � 0 ��� 0 50 100 150 200 Frequency [Hz] � ��� ��� ��� ��� ��� ��������� Pole Equator A × [cm] 5 0 − 5 A + [cm] 5 0 − 5 100 200 300 400 500 600 100 200 300 400 500 600 Time [ms] Time [ms] Tamborra et al., PRL (2013), PRD (2014). Andresen et al., MNRAS (2017). Kuroda et al., ApJ (2017). Walk, Tamborra et al., PRD (2018), PRD (2019).

  12. LESA: Neutrino-Driven Instability Neutrino lepton-number flux (11.2 M ) sun ν e > ¯ ν e ν e > ¯ ν e ν e < ¯ ν e Lepton-number emission asymmetry ( LESA ): Large-scale feature with dipole character . Tamborra, Hanke, Janka, Mueller, Raffelt, Marek, ApJ (2014). Janka et al., ARNPS (2016). Glas et al., (2018), Vartanyan et al., MNRAS (2019), O’Connor & Couch, ApJ (2018).

  13. Neutrinos Probe Black Hole Formation Successful explosions Failed explosions Fallback supernovae BH-forming Supernova (40 M ) sun 200 L ν e • Low-mass supernovae can form black holes. _ L ν e 150 L ν x L ν [10 51 erg s -1 ] • Neutrinos reveal black-hole formation. 100 abrupt termination 50 • Failed supernovae up to 20-40% of total. 0 0 100 200 300 400 500 t - t bounce [ms] Sukhbold et al., ApJ (2016). Ertl et al., ApJ (2016). Horiuchi et al., MNRSL (2014). O’Connor & Ott, ApJ (2011). O’Connor, ApJ (2015). Kuroda et al., MNRAS (2018).

  14. Neutrinos Probe Black Hole Formation SASI Neutrino (and gravitational waves) probe black-hole formation. SASI frequency evolution = shock radius evolution Walk, Tamborra, Janka, Summa, arXiv: 1910.12971.

  15. Neutrino Alert SuperNova Early Warning System (SNEWS). Network to alert astronomers of a burst (neutrinos reach Earth earlier than photons). ν ν ν Determination of supernova direction with neutrinos. ν ν ν ν ν ν ν Crucial for vanishing or weak supernova. ν

  16. ν e ν τ Flavor Evolution ν µ

  17. Neutrino Interactions � � � � all flavors � � � e � e � e, µ , � � e, µ , � � � � � Neutrinos interact with neutrons, W Z protons and electrons (MSW enhanced conversions). � � � � fermion (p, n, e) electron � � � � � � � � � � ( − ) ( − ) ν ν interactions � � ν − ν Non-linear phenomenon Z Angular distributions crucial! ( − ) ( − ) ν ν

  18. Simplified Picture of Flavor Conversions SN envelope Vacuum Earth Slow self-induced conversions (Earth Matter Effect) vacuum oscillations R ν -sphere ν ∆ m 2 MSW resonance δ m 2 MSW resonance Shock wave [not in scale]

  19. Fast Pairwise Neutrino Conversions Flavor conversion (vacuum or MSW): . ν e ( p ) → ν µ ( p ) Lepton flavor violation by mass and mixing. ν e ( p ) + ¯ ν e ( k ) → ν µ ( p ) + ¯ ν µ ( k ) Pairwise flavor exchange by scattering: ν − ν ν e ( p ) + ν µ ( k ) → ν µ ( p ) + ν e ( k ) Can occur without masses/mixing . No net lepton flavor change. ∆ m 2 p ν e ) ' 6 . 42 m − 1 ' 0 . 5 km − 1 Growth rate: vs. . 2 G F ( n ν e � n ¯ “Fast” conversions 2 E Flavor conversion may occur close to neutrino decoupling region. Further work needed. Izaguirre, Raffelt, Tamborra, PRL (2017). Tamborra et al., ApJ (2017). Shalgar & Tamborra, ApJ (2019). Capozzi et al., PRD (2017). Dasgupta et al., PRD 2018. Sawyer, PRD (2005), Sawyer, PRL (2016). Azari et al., PRD (2019).

  20. Simplified Picture of Flavor Conversions SN envelope Vacuum Earth Fast self-induced Slow self-induced conversions? conversions (Earth Matter Effect) vacuum oscillations R ν -sphere ν ∆ m 2 MSW resonance δ m 2 MSW resonance Shock wave [not in scale]

  21. Neutron Star Properties ν e species ν 0.15 ν e species ν Probability [ km - 1 ] Probability [ km - 1 ] ν x species ν 0.10 0.05 0.00 5 10 15 20 25 30 35 R reconstructed [ km ] (a) Default case (a) ν e species Late time neutrino signal can determine neutron star radius with 50-10% precision. Complementary information with respect to EM and gravitational wave determination (few %). Gallo Rosso et al., JCAP (2018). Lattimer & Steiner, ApJ (2014). Gendreau & Arzoumanian, Nature (2017). Lattimer & Prakash, Phys. Rep. (2007). LIGO and Virgo, PRL (2018).

  22. time z = 0 neutrinos Diffuse Supernova z = 1 Neutrino Background neutrinos z = 5

  23. Diffuse Supernova Neutrino Background DSNB detection will happen soon with, e.g., upcoming JUNO and Gd-Super-K project (sensitivity strongly improved). Recent review papers: Mirizzi, Tamborra et al. (2016). Lunardini (2010). Beacom (2010). Super-Kamiokande Collaboration, Astrop. Phys. (2015). Beacom & Vagins, PRL (2004). JUNO Coll., 2015.

  24. Fingerprints of the Supernova Population HK (Gd) + JUNO + DUNE BH − SN ¯ ¯ ν e R SN (0) [10 − 4 Mpc − 3 yr − 1 ] 10 0 10 1 σ 1 . 6 Φ ν β [MeV − 1 cm − 2 s − 1 ] 1 . 4 10 -1 10 2 σ 1 . 2 Fiducial DSNB model R SN (0) variability 10 -2 3 σ 10 f BH − SN = 9% 1 . 0 f BH − SN = 41% SFHo CC-SN + fast BH-SN > 3 σ IO 0 . 8 10 -3 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 10 5 10 15 20 25 30 35 40 f BH − SN E [MeV] • Independent test of the local supernova rate (~30% precision). • Constraints on fraction of failed supernovae. Moller, Suliga, Tamborra, Denton, JCAP (2018). Nakazato et al., ApJ (2015). Horiouchi et al., MNRAS (2018). Priya and Lunardini, JCAP (2017).

  25. Compact Binary Mergers Figure credit: Price & Rosswog, Science (2006).

  26. Neutrinos and Compact Binary Mergers Deaton et Compact binary mergers are neutrino rich environments (similarly to supernovae). Figure from Deaton et al., ApJ (2013).

  27. Neutrino Emission Properties Core-collapse supernova Neutron star merger remnant 4 -1 ] 52 erg s ν e ν e ν e 15 − 3 ν e Neutrino Energy Loss Rate [10 ν µ/ τ L [10 52 erg/s] 10 2 5 1 0 20 18 0 16 14 < ε > [MeV] 14 12 13 Mean Energy [MeV] ν e 10 12 − ν e 8 6 11 0 1 10 100 ν e 10 time [ms] ν e ν µ/ τ 9 Mergers exhibit excess of anti-neutrinos over 8 0 50 100 150 200 250 300 350 neutrinos (conversely to supernovae). Time After Bounce [ms] Figures from Wu, Tamborra et al., PRD (2017), Tamborra et al., PRD (2014).

  28. Stellar Nucleosynthesis Supernovae and neutron-star mergers Cu Ag Hg Ni Zn Pb Au Synthesis of new elements could not happen without neutrinos. + + e − ν e p n + + e + ¯ n p ν e

  29. Red and Blue Kilonova Components Blue kilonova (n/p < 3) Red kilonova (n/p > 3) Figures taken from: Metzger & Fernandez, MNRAS (2014); Kasen et al., Nature 2017.

Recommend


More recommend