On the affine VW supercategory On the affine VW supercategory Mee Seong Im West Point, NY Interactions of quantum affine algebras with cluster algebras, current algebras and categorification A conference celebrating the 60th birthday of Vyjayanthi Chari Catholic University of America, Washington, D.C. May 28, 2018 Mee Seong Im West Point, NY 1
On the affine VW supercategory Joint work Joint with Martina Balagovic, Zajj Daugherty, Inna Entova-Aizenbud, Iva Halacheva, Johanna Hennig, Gail Letzter, Emily Norton, Vera Serganova, and Catharina Stroppel. Mee Seong Im West Point, NY 2
On the affine VW supercategory Preliminaries Background: vector superspaces. Work over C . A Z / 2 Z -graded vector space V = V 0 ⊕ V 1 is a vector superspace . The superdimension of V is dim( V ) := (dim V 0 | dim V 1 ) = dim V 0 − dim V 1 . Given a homogeneous element v ∈ V , the parity (or the degree ) of v is v ∈ { 0 , 1 } . The parity switching functor π sends V 0 �→ V 1 and V 1 �→ V 0 . Let m = dim V 0 and n = dim V 1 . The Lie superalgebra is gl ( m | n ) := End C ( V ). That is, given a homogeneous ordered basis for V: V = C { v 1 , . . . , v m } ⊕ C { v 1 ′ , . . . , v n ′ } , � �� � � �� � V 0 V 1 Mee Seong Im West Point, NY 3
On the affine VW supercategory Preliminaries Matrix representation for gl ( m | n ). the Lie superalgebra is the endomorphism algebra �� A � � B : A ∈ M m , m , B , C t ∈ M m , n , D ∈ M n , n gl ( m | n ) := , C D where M i , j := M i , j ( C ). Since gl ( m | n ) = gl ( m | n ) 0 ⊕ gl ( m | n ) 1 , �� A �� �� 0 �� 0 B gl ( m | n ) 0 = and gl ( m | n ) 1 = . 0 D C 0 We say V is the natural representation of gl ( m | n ). The grading on gl ( m | n ) is induced by V , with Lie superbracket (supercommutator) [ x , y ] = xy − ( − 1) xy yx for x , y homogeneous. Mee Seong Im West Point, NY 4
On the affine VW supercategory Periplectic Lie superalgebras p ( n ) Periplectic Lie superalgebras p ( n ). Let m = n . Then V = C 2 n = C { v 1 , . . . , v n } ⊕ C { v 1 ′ , . . . , v n ′ } . � �� � � �� � V 0 V 1 Define β : V ⊗ V → C as a symmetric, odd, nondegenerate bilinear form satisfying: β ( v , w ) = β ( w , v ) , β ( v , w ) = 0 if v = w . We define periplectic (strange) Lie superalgebras as: p ( n ) := { x ∈ End C ( V ) : β ( xv , w ) + ( − 1) xv β ( v , xw ) = 0 } . In terms of above basis, �� A � � B ∈ gl ( n | n ) : B = B t , C = − C t p ( n ) = . − A t C Mee Seong Im West Point, NY 5
On the affine VW supercategory Periplectic Lie superalgebras p ( n ) Symmetric monoidal structure. Consider the category C of representations of p ( n ) with Hom p ( n ) ( V , V ′ ) := { f : V → V ′ : f homogeneous , C − linear , f ( x . v ) = ( − 1) xf x . f ( v ) , v ∈ V , x ∈ p ( n ) } . Then U ( p ( n )) of p ( n ) is a Hopf superalgebra: ◮ (coproduct) ∆( x ) = x ⊗ 1 + 1 ⊗ x , ◮ (counit) ǫ ( x ) = 0, ◮ (antipode) S(x) = -x. So the category of representations of p ( n ) is monoidal. For x ⊗ y ∈ U ( p ( n )) ⊗ U ( p ( n )) on v ⊗ w , ( x ⊗ y ) . ( v ⊗ w ) = ( − 1) yv xv ⊗ yw . Mee Seong Im West Point, NY 6
On the affine VW supercategory Periplectic Lie superalgebras p ( n ) Symmetric monoidal structure. For x , y , a , b ∈ U ( p ( n )), ( x ⊗ y ) ◦ ( a ⊗ b ) := ( − 1) ya ( x ◦ a ) ⊗ ( y ◦ b ) , and for two representations V and V ′ , the super swap σ : V ⊗ V ′ − → V ′ ⊗ V , σ ( v ⊗ w ) = ( − 1) vw w ⊗ v is a map of p ( n )-representations satisfying σ ∗ = − σ . Thus C is a symmetric monoidal category. Furthermore, β induces a representation V and its dual V ∗ via V → V ∗ , v �→ β ( v , − ) , identifying V 1 with V ∗ 0 and V 0 with V ∗ 1 . This induces the dual map � β ∗ : C ∼ = C ∗ − → ( V ⊗ V ) ∗ ∼ β ∗ (1) = = V ⊗ V , − v i ⊗ v i ′ + v i ′ ⊗ v i , i where β = β ∗ = 1. Mee Seong Im West Point, NY 7
On the affine VW supercategory Periplectic Lie superalgebras p ( n ) Quadratic (fake) Casimir and Jucys-Murphy elements: y ℓ ’s. Furthermore, we define � � � x ⊗ x ∗ ∈ p ( n ) ⊗ gl ( n | n ) Ω = 2 2Ω = − , x ∈X where X is a basis of p ( n ) and x ∗ is a dual basis element of p ( n ), and p ( n ) ⊥ is taken with respect to the supertrace: � A � B = tr ( A ) − tr ( D ) . str C D The actions of Ω and p ( n ) commute on M ⊗ V , so Ω ∈ End p ( n ) ( M ⊗ V ). We define ℓ − 1 � Y ℓ : M ⊗ V ⊗ a − → M ⊗ V ⊗ a as Y ℓ = Ω i ,ℓ = , i =0 where Ω i ,ℓ acts on the i -th and ℓ -th factor, and identity otherwise, where the 0-th factor is the module M . Mee Seong Im West Point, NY 8
On the affine VW supercategory Schur-Weyl duality Classical Schur-Weyl duality. Let W be an n -dimensional complex vector space. Consider W ⊗ a . Then the symmetric group S a acts on W ⊗ a by permuting the factors: for s i = ( i i + 1) ∈ S a , s i . ( w 1 ⊗ · · · ⊗ w a ) = w 1 ⊗ · · · ⊗ w i +1 ⊗ w i ⊗ · · · ⊗ w a . We also have GL ( W ) acting on W ⊗ a via the diagonal action: for g ∈ GL ( W ), g . ( w 1 ⊗ · · · ⊗ w a ) = gw 1 ⊗ · · · ⊗ gw a . Then actions of GL ( W ) (left natural action) and S a (right permutation action) commute giving us the following: Mee Seong Im West Point, NY 9
On the affine VW supercategory Schur-Weyl duality Schur-Weyl duality. Consider the natural representations φ ψ ( C S a ) op → End C ( W ⊗ a ) → End C ( W ⊗ a ) . − and GL ( W ) − Then Schur-Weyl duality gives us 1. φ ( C S a ) = End GL ( W ) ( W ⊗ a ), 2. if n ≥ a , then φ is injective. So im φ ∼ = End GL ( W ) ( W ⊗ a ), 3. ψ ( GL ( W )) = End C S a ( W ⊗ a ), 4. there is an irreducible ( GL ( W ) , ( C S a ) op )-bimodule decomposition (see next slide): Mee Seong Im West Point, NY 10
On the affine VW supercategory Schur-Weyl duality Schur-Weyl duality (continued). � W ⊗ a = ∆ λ ⊗ S λ , λ =( λ 1 ,λ 2 ,... ) ⊢ a ℓ ( λ ) ≤ n where ◮ ∆ λ is an irreducible GL ( W )-module associated to λ , ◮ S λ is an irreducible C S a -module associated to λ , and ◮ ℓ ( λ ) = max { i ∈ Z : λ i � = 0 , λ = ( λ 1 , λ 2 , . . . ) } . In higher Schur-Weyl duality, we construct a result analogous to C S a ∼ = End GL ( W ) ( W ⊗ a ) , but we use the existence of commuting actions on the tensor product of arbitrary gl n -representation M with W ⊗ a : gl n � M ⊗ W ⊗ a � H a , Mee Seong Im West Point, NY 11
On the affine VW supercategory Schur-Weyl duality where H a is the degenerate affine Hecke algebra . The Hecke algebra H a contains the group algebra C S a and the polynomial algebra C [ y 1 , . . . , y a ] as subalgebras. So as a vector space, H a ∼ = C S a ⊗ C [ y 1 , . . . , y a ], and has a basis B = { wy k 1 1 · · · y k a a : w ∈ S a , k i ∈ N 0 } . In this talk, we aim to construct higher Schur-Weyl duality in the context of p ( n ) and affine Brauer algebras, which we will denote by sV V a (so affine Brauer algebras were constructed from the motivation to formulate higher Schur-Weyl duality for the periplectic Lie superalgebra action, i.e., we need to find another algebra whose action on a representation M ⊗ V ⊗ a commutes with the action of p ( n )). Mee Seong Im West Point, NY 12
On the affine VW supercategory Affine Brauer algebras Affine Brauer algebras (generators and local moves). V a has generators s i , b i , b ∗ sV i , y j , where i = 1 , . . . , a − 1, j = 1 , . . . , a and relations = = = = = Continued in the next slide. Mee Seong Im West Point, NY 13
On the affine VW supercategory Affine Brauer algebras Affine Brauer algebras (local moves; continued). = − = − = (braid reln) = (braid reln) = (adjunctions) = − (adjunctions) = (untwisting reln) = = − (untwisting reln) = Mee Seong Im West Point, NY 14
On the affine VW supercategory Affine Brauer algebras Affine Brauer algebras (local moves; continued). = = = = = = = + − = − = − − = Mee Seong Im West Point, NY 15
On the affine VW supercategory Affine Brauer algebras (Regular) monomials. An example. Algebraically, it is written as y 2 1 y 4 4 b 4 s 1 s 3 s 6 y 1 y 2 6 y 7 s 5 b ∗ 2 b 2 b ∗ 3 . Our affine VW superalgebra sV V a is: ◮ super (signed) version of the degenerate BMW algebra, ◮ the signed version of the affine VW algebra, and ◮ an affine version of the Brauer superalgebra. Mee Seong Im West Point, NY 16
On the affine VW supercategory The center of affine VW superalgebras The center of sV V a . Theorem The center Z ( sV V a ) consists of all polynomials of the form � (( y i − y j ) 2 − 1) � f + c , 1 ≤ i < j ≤ a f ∈ C [ y 1 , . . . , y a ] S a and c ∈ C . where � The deformed squared Vandermonde determinant � 1 ≤ i < j ≤ a (( y i − y j ) 2 − 1) is symmetric, so � (( y i − y j ) 2 − 1) ∈ C [ y 1 , . . . , y a ] S a . 1 ≤ i < j ≤ a Mee Seong Im West Point, NY 17
Recommend
More recommend