" K " Affine combination { Save I Ea # I . affine hull gene . . . . . : o .
affine indep 4 . un . . VECTOR #¥TEN NO IN 2 WAYS AS AFF . COMB . as= and Epi = 0 . then tipi - O - it
domain of wefts Fink field : Fp mod p prime p = { o , 1,23 HI 2.2=1 It 2=0 a b = O ⇒ a =D b = 0 or snod\6 23=0 HIT order of Ifs 3 is " 3
SET " ← II cards " SET " : affine line -
SQUARE LATIN nxn 3 I 2 n ) : # hxn ( ( 3 21 2 I 3 Latin squares Lk ) 21 ' Sinitta 's :c : n n ! HETE
" " ' L ( n ) e ( n ! ) s ( nh ) = hh " cnn.is ! nah - - ( ⇒ . . ton Lin , ~ ( THIT fn L ( n ) - si en n
Steiner Triple Systems ) IT E -_ { all 3- subsets Cris } of ttxty E fit ← points Yz line E J F ! × Y - { x , y ,z } ET
FANO PLANE ¥ SPACE PROTECTIVE * # t
112340 } " ¥¥ ¥ " set of - equivalence " 1T RHA classes : projective plane XIV } plane -_{ xlx.ro
famous coordinates at Ca , and # 90,0103 field of ~ [ Xa order p , ] , Taz , Xa 7*0 size of equiv . class : - I p F- Erik 's ] - O via p2 , . pI=p7ptI points pnoj.gs/aneoforderp
= G. classes P points =L lines # p2fpt , ftp.#gazas3AAsl68coL*hfEEs' E - COORDINAIZATION Ftz y=¥¥# ⇒ o 0100 p-fqyizJ7-It2tI1o1oYtt-g@11ol-f1.o p=2 , if °o¥i .PE?Ifz=o P¥dent 0010 × -0 81 ,
= 120 pennis 5 ! " alternating 60 even " group sp of notations of dodecahedron Felix Klein - Icosahedron t 5th deg Eg . : Evan ite Galois t 21 Galois planes
' plane Finite prog , I ) ( P " P , L " points " lines " L F ! IE P x L o_ 0 & incidence ¥¥ 4 - point axiom 74 pts , no 3 on a line
If Some line l has ntl pts l # m DO n t I every line has YI then ( t ) * G ) every pet has n ti tries through it ) IP I =/ L l = n 't n t I
DU AL CP , L of , I ) ' ) is ( L , I P , pal Do lap The duel of ' plane ' plane a prog a prog is
Recommend
More recommend