On Lagrangian surfaces in the complex projective plane On Lagrangian surfaces in the complex projective plane Hui Ma Department of Mathematical Sciences Tsinghua University, Beijing, 100084, China hma@math.tsinghua.edu.cn PADGE2012, August 27-30, Leuven
On Lagrangian surfaces in the complex projective plane Contents 1 Geometry of surfaces in C P 2 2 Minimal Lagrangian surfaces in C P 2 3 Hamiltonian stationary Lagrangian surfaces in C P 2 4 Lagrangian Bonnet pairs in C P 2 5 Stability
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 The Lagrangian surfaces theory in C P 2 has already been very rich. In this talk, we will not cover Good coordinate of Lagrangian surfaces in C P 2 Pinching results Simons formula Relation with affine spheres Relation with Painlev´ e III equation ......
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Examples of Lagrangian surfaces in C P 2 ( C P 2 , g, J, ω ) the complex projective plane f : Σ → C P 2 Lagrangian surface def f ∗ ω = 0 ⇔ Jf ∗ T Σ ⊥ f ∗ T Σ “Lagrangian ” ⇐ ⇒ π : S 5 ⊂ C 3 → C P 2 Hopf projection 1 Totally geodesic R P 2 : R P 2 = { π ( z 1 , z 2 , z 3 ) ∈ C P 2 | z i = ¯ z i , 1 ≤ i ≤ 3 } . 2 Clifford torus: T 2 = { π ( z 1 , z 2 , z 3 ) ∈ C P 2 || z 1 | 2 = | z 2 | 2 = | z 3 | 2 = 1 3 } .
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Examples of Lagrangian surfaces in C P 2 ( C P 2 , g, J, ω ) the complex projective plane f : Σ → C P 2 Lagrangian surface def f ∗ ω = 0 ⇔ Jf ∗ T Σ ⊥ f ∗ T Σ “Lagrangian ” ⇐ ⇒ π : S 5 ⊂ C 3 → C P 2 Hopf projection 1 Totally geodesic R P 2 : R P 2 = { π ( z 1 , z 2 , z 3 ) ∈ C P 2 | z i = ¯ z i , 1 ≤ i ≤ 3 } . 2 Clifford torus: T 2 = { π ( z 1 , z 2 , z 3 ) ∈ C P 2 || z 1 | 2 = | z 2 | 2 = | z 3 | 2 = 1 3 } .
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Examples of Lagrangian surfaces in C P 2 ( C P 2 , g, J, ω ) the complex projective plane f : Σ → C P 2 Lagrangian surface def f ∗ ω = 0 ⇔ Jf ∗ T Σ ⊥ f ∗ T Σ “Lagrangian ” ⇐ ⇒ π : S 5 ⊂ C 3 → C P 2 Hopf projection 1 Totally geodesic R P 2 : R P 2 = { π ( z 1 , z 2 , z 3 ) ∈ C P 2 | z i = ¯ z i , 1 ≤ i ≤ 3 } . 2 Clifford torus: T 2 = { π ( z 1 , z 2 , z 3 ) ∈ C P 2 || z 1 | 2 = | z 2 | 2 = | z 3 | 2 = 1 3 } .
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Examples of Lagrangian surfaces in C P 2 ( C P 2 , g, J, ω ) the complex projective plane f : Σ → C P 2 Lagrangian surface def f ∗ ω = 0 ⇔ Jf ∗ T Σ ⊥ f ∗ T Σ “Lagrangian ” ⇐ ⇒ π : S 5 ⊂ C 3 → C P 2 Hopf projection 1 Totally geodesic R P 2 : R P 2 = { π ( z 1 , z 2 , z 3 ) ∈ C P 2 | z i = ¯ z i , 1 ≤ i ≤ 3 } . 2 Clifford torus: T 2 = { π ( z 1 , z 2 , z 3 ) ∈ C P 2 || z 1 | 2 = | z 2 | 2 = | z 3 | 2 = 1 3 } .
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Lagrangian Surfaces in C P 2 ( C P 2 , g, J, ω ) the complex projective plane f : Σ → C P 2 an oriented Lagrangian surface with the induce metric g = 2 e u dzd ¯ z def f ∗ ω = 0 ⇔ Jf ∗ T Σ ⊥ f ∗ T Σ “Lagrangian ” ⇐ ⇒ A.-M. Li and C.P. Wang, Geometry of surfaces in C P 2 , preprint, 1999. C. Wang, The classification of homogeneous surfaces in C P 2 , Geometry and topology of submanifolds, X (Beijing/Berlin, 1999), 303-314, 2000.
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Lagrangian Surfaces in C P 2 W.l.g., we always can choose a local horizontal lift F to S 5 , i.e., F z · ¯ F = 0. The metric g is conformal = ⇒ σ = ( F, F z , F ¯ z ) Hermitian orthogonal σ z = σ U , σ ¯ z = σ V , U ¯ z − V z = [ U , V ] ⇐ ⇒ u, φ, ψ satisfy z + ¯ φ ¯ φ z = 0 , z + e u + | φ | 2 − e − 2 u | ψ | 2 u z ¯ = 0 , e − u ψ ¯ = φ z − u z φ. z z dz 3 := ψdz 3 . Φ := e − u F z ¯ z · F ¯ z dz := φdz, Ψ := F zz · F ¯
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Lagrangian Surfaces in C P 2 W.l.g., we always can choose a local horizontal lift F to S 5 , i.e., F z · ¯ F = 0. The metric g is conformal = ⇒ σ = ( F, F z , F ¯ z ) Hermitian orthogonal σ z = σ U , σ ¯ z = σ V , U ¯ z − V z = [ U , V ] ⇐ ⇒ u, φ, ψ satisfy z + ¯ φ ¯ φ z = 0 , z + e u + | φ | 2 − e − 2 u | ψ | 2 u z ¯ = 0 , e − u ψ ¯ = φ z − u z φ. z z dz 3 := ψdz 3 . Φ := e − u F z ¯ z · F ¯ z dz := φdz, Ψ := F zz · F ¯
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Lagrangian Surfaces in C P 2 W.l.g., we always can choose a local horizontal lift F to S 5 , i.e., F z · ¯ F = 0. The metric g is conformal = ⇒ σ = ( F, F z , F ¯ z ) Hermitian orthogonal σ z = σ U , σ ¯ z = σ V , U ¯ z − V z = [ U , V ] ⇐ ⇒ u, φ, ψ satisfy z + ¯ φ ¯ φ z = 0 , z + e u + | φ | 2 − e − 2 u | ψ | 2 u z ¯ = 0 , e − u ψ ¯ = φ z − u z φ. z z dz 3 := ψdz 3 . Φ := e − u F z ¯ z · F ¯ z dz := φdz, Ψ := F zz · F ¯
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Lagrangian Surfaces in C P 2 W.l.g., we always can choose a local horizontal lift F to S 5 , i.e., F z · ¯ F = 0. The metric g is conformal = ⇒ σ = ( F, F z , F ¯ z ) Hermitian orthogonal σ z = σ U , σ ¯ z = σ V , U ¯ z − V z = [ U , V ] ⇐ ⇒ u, φ, ψ satisfy z + ¯ φ ¯ φ z = 0 , z + e u + | φ | 2 − e − 2 u | ψ | 2 u z ¯ = 0 , e − u ψ ¯ = φ z − u z φ. z z dz 3 := ψdz 3 . Φ := e − u F z ¯ z · F ¯ z dz := φdz, Ψ := F zz · F ¯
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Geometry of Φ and Ψ z dz 3 := ψdz 3 Φ := e − u F z ¯ z · F ¯ z dz := φdz Ψ := F zz · F ¯ Bonnet theorem A Lagrangian surface in C P 2 is locally determined by { u, φ, ψ } satisfying the following equations z + ¯ φ ¯ φ z = 0 , z + e u + | φ | 2 − e − 2 u | ψ | 2 u z ¯ = 0 , e − u ψ ¯ = φ z − u z φ. z f is minimal ⇐ ⇒ Φ ≡ 0 = ⇒ Ψ is holomorphic. f is Hamiltonian stationary Lagrangian (Hamiltonian minimal) ⇐ ⇒ Φ is holomorphic. f is twistor harmonic ⇐ ⇒ Ψ is holomorphic. Remark. α H := ω ( H, · ) = i (Φ − ¯ Φ) .
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Geometry of Φ and Ψ z dz 3 := ψdz 3 Φ := e − u F z ¯ z · F ¯ z dz := φdz Ψ := F zz · F ¯ Bonnet theorem A Lagrangian surface in C P 2 is locally determined by { u, φ, ψ } satisfying the following equations z + ¯ φ ¯ φ z = 0 , z + e u + | φ | 2 − e − 2 u | ψ | 2 u z ¯ = 0 , e − u ψ ¯ = φ z − u z φ. z f is minimal ⇐ ⇒ Φ ≡ 0 = ⇒ Ψ is holomorphic. f is Hamiltonian stationary Lagrangian (Hamiltonian minimal) ⇐ ⇒ Φ is holomorphic. f is twistor harmonic ⇐ ⇒ Ψ is holomorphic. Remark. α H := ω ( H, · ) = i (Φ − ¯ Φ) .
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Geometry of Φ and Ψ z dz 3 := ψdz 3 Φ := e − u F z ¯ z · F ¯ z dz := φdz Ψ := F zz · F ¯ Bonnet theorem A Lagrangian surface in C P 2 is locally determined by { u, φ, ψ } satisfying the following equations z + ¯ φ ¯ φ z = 0 , z + e u + | φ | 2 − e − 2 u | ψ | 2 u z ¯ = 0 , e − u ψ ¯ = φ z − u z φ. z f is minimal ⇐ ⇒ Φ ≡ 0 = ⇒ Ψ is holomorphic. f is Hamiltonian stationary Lagrangian (Hamiltonian minimal) ⇐ ⇒ Φ is holomorphic. f is twistor harmonic ⇐ ⇒ Ψ is holomorphic. Remark. α H := ω ( H, · ) = i (Φ − ¯ Φ) .
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Geometry of Φ and Ψ z dz 3 := ψdz 3 Φ := e − u F z ¯ z · F ¯ z dz := φdz Ψ := F zz · F ¯ Bonnet theorem A Lagrangian surface in C P 2 is locally determined by { u, φ, ψ } satisfying the following equations z + ¯ φ ¯ φ z = 0 , z + e u + | φ | 2 − e − 2 u | ψ | 2 u z ¯ = 0 , e − u ψ ¯ = φ z − u z φ. z f is minimal ⇐ ⇒ Φ ≡ 0 = ⇒ Ψ is holomorphic. f is Hamiltonian stationary Lagrangian (Hamiltonian minimal) ⇐ ⇒ Φ is holomorphic. f is twistor harmonic ⇐ ⇒ Ψ is holomorphic. Remark. α H := ω ( H, · ) = i (Φ − ¯ Φ) .
On Lagrangian surfaces in the complex projective plane Geometry of surfaces in C P 2 Geometry of Φ and Ψ z dz 3 := ψdz 3 Φ := e − u F z ¯ z · F ¯ z dz := φdz Ψ := F zz · F ¯ Bonnet theorem A Lagrangian surface in C P 2 is locally determined by { u, φ, ψ } satisfying the following equations z + ¯ φ ¯ φ z = 0 , z + e u + | φ | 2 − e − 2 u | ψ | 2 u z ¯ = 0 , e − u ψ ¯ = φ z − u z φ. z f is minimal ⇐ ⇒ Φ ≡ 0 = ⇒ Ψ is holomorphic. f is Hamiltonian stationary Lagrangian (Hamiltonian minimal) ⇐ ⇒ Φ is holomorphic. f is twistor harmonic ⇐ ⇒ Ψ is holomorphic. Remark. α H := ω ( H, · ) = i (Φ − ¯ Φ) .
� � � � � On Lagrangian surfaces in the complex projective plane Minimal Lagrangian surfaces in C P 2 Minimal Lagrangian surfaces in C P 2 Minimal Lagrangian ⇐ ⇒ Φ ≡ 0 = ⇒ e − 2 u | ψ | 2 − e u , u z ¯ = z ψ ¯ = 0 , z which are invariant under the transformation Ψ → e it Ψ for t ∈ R . SL C ˜ C 3 Σ min. Leg. � ˜ S 5 Σ min. Lag. � C P 2 Σ It gives rise to a local model of singular special Lagrangian 3-folds in Calabi-Yau threefolds.
Recommend
More recommend