The z=0.89 molecular absorber toward PKS1830-211: molecules as cosmological probes Sébastien Muller Onsala Space Observatory, Sweden Cosmology for All – Lund, 2013 Feb. 4
Interests of molecular absorption studies at z>0 - Chemical inventory and gas properties in distant galaxies - No distance dilution - Spatial resolution (continuum illumination ~ few mas) As cosmological probes - CMB temperature as a function of redshift - Test of variations of fundamental constants ( α , μ=m p /m e ) - H0 - Chemical enrichment of the Universe (isotopic ratios)
Extragalactic radio-mm molecular absorbers Background Source z(abs) continuum N(H 2 ) Molecules detected flux (cm -2 ) (Jy @3mm) CO, OH, NH 3 , CN, HCO + , HCN, N 2 H + , CS, 2 x 10 20 Cen A 0.002 6 H 2 CO, C 3 H 2 2 x 10 19 CO, HCO + , HCN 3C293 0.045 1 x 10 19 CO, HCO + , HCN 4C31.04 0.060 PKS 1413+135 0.247 0.5 5 x 10 20 CO, CN, HCO + , HCN, HNC 5 x 10 20 CO, HCO + , HCN, HNC B 1504+377 0.673 0.4 4 x 10 21 CO, NH 3 , H 2 0, HCO + , HCN, HNC, CS, H 2 S, B 0218+357 0.685 0.5 H 2 CO lensed OH (only) PKS 0132-097 0.765 0.4 2 x 10 22 0.886 2-3 > 40 ! species (not incl. isotopic variants) PKS 1830-211 lensed e.g. see review by Combes 2008
PKS1830-211 is the most notable radio molecular absorber at z>0 Of the only 5 distant radio molecular absorbers known to date (0.24 < z < 0.89) PKS1830-211 has: - highest redshift: z=0.89 - brightest mm continuum - largest amount of absorbing material - gravitational lens - molecular absorption toward the SW and NE images of the quasar - time variations (continuum & molecular profile)
PKS1830-211 Lensed images of the quasar z=0.89 absorber Foreground z=0.19 galaxy HST, Courbin et al
Unbiased ATCA-7mm spectral survey Muller et al 2011 - Frequency coverage 30 - 50 GHz with ATCA - 28 species + 8 isotopic variants detected toward the SW LOS - Molecular abundances similar to that of Galactic diffuse/translucent clouds Universality of chemistry ! - Excitation mostly coupled with the CMB photons - Additional velocity components at -300, -225, and +170 km/s (unknown origin)
ALMA Early Science (Cycle 0) data H2O Muller et al in prep The ground-state transition of ortho-water: -> Deepest absorption of all observed lines -> Heavy saturation toward SW LOS -> Multiple velocity components toward both LOS -> Absorption spanning a large velocity range APEX - Menten et al 2008
ALMA: Main absorption along the SW LOS Saturated Optically thick Optically thin
ALMA: Absorption along the NE LOS ATCA Muller et al 2011 - Multiple velocity components - Large velocity span - Similarity of H 2 O and HCO + profiles - Optically thin lines
Chemical inventory toward the SW LOS 1 atom 2 atoms 3 atoms 4 atoms 5 atoms 6 atoms 7 atoms H CH NH 2 NH 3 CH 2 NH CH 3 OH CH 3 NH 2 C OH H 2 O H 2 CO c-C 3 H 2 CH 3 CN CH 3 CCH CO C 2 H l-C 3 H l-C 3 H 2 NH 2 CHO CH 3 CHO CS HCN HNCO H 2 CCN SiO HNC HOCO+ H 2 CCO NS N 2 H+ H 2 CS C 4 H SO HCO+ HC 3 N SO+ HCO HOC+ H 2 S H 2 Cl+ 42 species + 14 isotopic variants HCS+ C 2 S @ z=0.89 ! See Muller et al 2011, 2013 + in prep
Multi-transition excitation analysis ATCA 7 mm + 3 mm RADEX + Monte Carlo Markov Chains Best fit to the data: T CMB = 5.08 ± 0.10 K (68%) T kin ~ 80 K n(H2) ~ 1000 - 2000 cm -3 Muller et al 2013
The T CMB – redshift law T CMB = 5.08 ± 0.10 K See Noterdaeme et al 2011 -> Consistent with adiabatic expansion of the Universe: T CMB (z) = T 0 x (1+z) … = 5.14 K @z=0.89
Probing the cosmological variations of fundamental constants of Physics with molecules - Astronomical constraints toward high-z quasars cover longer time (and space) span than laboratory measurements - A variation of e.g. or µ= m p /m e would introduce a shift in transition frequency Hence a velocity offset between two lines i,j with different freq dependence in a, µ ∆ V ij / c = (K µ i – K µ j ) ∆µ/µ + (K α i – K α j ) ∆α/α Sensitivity coefficients - H 2 : | ∆ K µ | ~ 0.01 - Inversion lines of NH 3 wrt a rotational line: | ∆ K µ | = 3.5 Flambaum & Kozlov 2007 - Various lines of CH 3 OH have different sensitivity: K µ = -40 to +50 Jansen et al 2011 - CI wrt a rotational line | ∆ K µ | = 1, | ∆ K α | = 2 - CH @532,536 GHz wrt a rotational line: | ∆ K µ | = 0.8, | ∆ K α | = 1.6 de Nijs et al 2012 - OH conjugate lines have sensitivity to G=g p ( µα 2 ) 1.85 e.g. Kanekar et al 2010
e.g. Constraints on ∆µ/µ using molecules ∆µ/µ Method Target Ref. inv.NH 3 vs (HCO + , HCN) < 1.8 x 10 -6 B0218+357 z=0.68 Murphy et al 2008 < 1.4 x 10 -6 Henkel et al 2009 inv.NH 3 vs HC 3 N PKS1830-211 z=0.89 < 3.6 x 10 -7 Kanekar 2011 inv.NH 3 vs (CS, H 2 CO) B0218+357 z=0.68 < 2.2 x 10 -6 inv.NH 3 vs (average of 22 species) PKS1830-211 z=0.89 Muller et al 2011 < 1.4 x 10 -6 Muller et al 2011 CH 3 OH vs (average of 22 species) PKS1830-211 z=0.89 < 6.3 x 10 -7 Ellingsen et al 2012 CH 3 OH PKS1830-211 z=0.89 < 3.0 x 10 -7 CH 3 OH PKS1830-211 z=0.89 Bagdonaite et al 2013 Issues: - Chemical segregation -> Observe self-reference (e.g. CH 3 OH) -> Statistical constraint wrt multi references - Excitation/opacity effects - Time variability of the continuum -> Simultaneous observation of reference - Change of the continuum morphology with frequency
Time delay and H0 Time delay + lens model => geometrical measurement of H0 Need to 1) Resolve the NE-SW images, separated by 1'' 2) Disentangle the core-jet emission of the quasar ATCA 8.6 GHz Time delay = 26 (-5+4) days (Lovell et al 1998) Altern. using molecules Wiklind & Combes (1999) SEST monitoring Total continuum flux HCO+ J=2-1 line NE + SW images Time delay: 24 (-4 +5) days + Lens model (Nair et al 1993) Depth of HCO+ 2-1 line (= flux of SW image) H0 = 69 (-11 +12) km s -1 Mpc -1 (q0=0.5)
Isotopic ratios Ratio @z=0.89 Note Earth Upper limit D/H < 7e-4 Cosmic 2.5e-5 12 C/ 13 C Difficult to measure due to opacity / fractionation effects 30 - ? 89 14 N/ 15 N 100 - 200 272 ~< (Uncertainty from 12 C/ 13 C) 16 O/ 18 O ~100 499 < (Uncertainty from 12 C/ 13 C) 13 ± 3 18 O/ 17 O 5.5 > 7 ± 0.5 28 Si/ 29 Si 22 < (preliminary) 1.9 ± 0.3 29 Si/ 30 Si 1.5 ~ (preliminary) 10.5 ± 0.5 32 S/ 34 S 22.5 < ~ 35 Cl/ 37 Cl ~3 3.1
Summary - PKS1830-211 is a unique target for molecular absorption studies -> Basic gas properties and interstellar chemistry in the disk of a z=0.89 galaxy - Molecules as cosmological probes: -> Evolution of the CMB temperature with z -> Variations of fundamental constants -> H0 -> Isotopic ratios and nucleosynthesis constraints - Unfortunately, only a handful of known z>0 mm-radio absorbers Need to find more !
Recommend
More recommend