on enumerating factorizations in reflection groups
play

On enumerating factorizations in reflection groups. Theo - PowerPoint PPT Presentation

On enumerating factorizations in reflection groups. Theo Douvropoulos Paris VII, IRIF ERC CombiTop FPSAC Ljubljana, July 5, 2019 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5,


  1. On enumerating factorizations in reflection groups. Theo Douvropoulos � � Paris VII, IRIF ERC CombiTop FPSAC Ljubljana, July 5, 2019 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 1 / 19

  2. The number of reduced reflection factorizations of c Theorem (Hurwitz, 1892) There are n n − 2 (minimal length) factorizations t 1 · · · t n − 1 = (12 · · · n ) ∈ S n where the t i ’s are transpositions. Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 2 / 19

  3. The number of reduced reflection factorizations of c Theorem (Hurwitz, 1892) There are n n − 2 (minimal length) factorizations t 1 · · · t n − 1 = (12 · · · n ) ∈ S n where the t i ’s are transpositions. For example, the 3 1 factorizations (12)(23) = (123) (13)(12) = (123) (23)(13) = (123) . Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 2 / 19

  4. The number of reduced reflection factorizations of c Theorem (Hurwitz, 1892) There are n n − 2 (minimal length) factorizations t 1 · · · t n − 1 = (12 · · · n ) ∈ S n where the t i ’s are transpositions. For example, the 3 1 factorizations (12)(23) = (123) (13)(12) = (123) (23)(13) = (123) . Theorem (Deligne-Arnol’d-Bessis) For a well-generated, complex reflection group W and a Coxeter element c, there are h n n ! | W | (minimal length) reflection factorizations t 1 · · · t n = c where h = | c | . Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 2 / 19

  5. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact S n , c ( N ) t N FAC S n , c ( t ) = N ! . N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 3 / 19

  6. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact S n , c ( N ) t N FAC S n , c ( t ) = N ! . N ≥ 0 Theorem (Jackson, ’88) If c = (12 · · · n ) ∈ S n , then FAC S n , c ( t ) = e t ( n 2 ) � 1 − e − tn � n − 1 . n ! Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 3 / 19

  7. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact S n , c ( N ) t N FAC S n , c ( t ) = N ! . N ≥ 0 Theorem (Jackson, ’88) If c = (12 · · · n ) ∈ S n , then FAC S n , c ( t ) = e t ( n 2 ) � 1 − e − tn � n − 1 . n ! Notice that � � t n − 1 FAC S n , c ( t ) = 1 n ! · ( n ) n − 1 · ( n − 1)! = n n − 2 . ( n − 1)! Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 3 / 19

  8. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact W , c ( N ) t N FAC W , c ( t ) = N ! . N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 4 / 19

  9. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact W , c ( N ) t N FAC W , c ( t ) = N ! . N ≥ 0 Theorem (Chapuy-Stump, ’12) If W is well-generated, of rank n, and h is the order of the Coxeter element c, then FAC W , c ( t ) = e t |R| � 1 − e − th � n . | W | Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 4 / 19

  10. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact W , c ( N ) t N FAC W , c ( t ) = N ! . N ≥ 0 Theorem (Chapuy-Stump, ’12) If W is well-generated, of rank n, and h is the order of the Coxeter element c, then FAC W , c ( t ) = e t |R| � 1 − e − th � n . | W | Notice that � t n � | W | · h n · n ! = h n n ! 1 FAC W , c ( t ) = | W | . n ! Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 4 / 19

  11. There must be an example we can do by hand? Let C 2 := { Id , c } be the group of order 2 and R = { c } . Then, t + t 3 3! + t 5 FAC C 2 , c ( t ) = 5! + · · · Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 5 / 19

  12. There must be an example we can do by hand? Let C 2 := { Id , c } be the group of order 2 and R = { c } . Then, t + t 3 3! + t 5 FAC C 2 , c ( t ) = 5! + · · · e t − e − t = e t � 1 − e − 2 t � = 2 · 2 And a non-example? Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 5 / 19

  13. There must be an example we can do by hand? Let C 2 := { Id , c } be the group of order 2 and R = { c } . Then, t + t 3 3! + t 5 FAC C 2 , c ( t ) = 5! + · · · e t − e − t = e t � 1 − e − 2 t � = 2 · 2 And a non-example? For C n := { Id , c , · · · , c n − 1 } if we pick factors only from U := { c } , we again have t n +1 t 2 n +1 FAC C n , c ( t ) = t + ( n + 1)! + (2 n + 1)! + · · · Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 5 / 19

  14. There must be an example we can do by hand? Let C 2 := { Id , c } be the group of order 2 and R = { c } . Then, t + t 3 3! + t 5 FAC C 2 , c ( t ) = 5! + · · · e t − e − t = e t � 1 − e − 2 t � = 2 · 2 And a non-example? For C n := { Id , c , · · · , c n − 1 } if we pick factors only from U := { c } , we again have t n +1 t 2 n +1 FAC C n , c ( t ) = t + ( n + 1)! + (2 n + 1)! + · · · � e t + ξ − 1 · e ξ · t + ξ − 2 · e ξ 2 · t + · · · + ξ − n +1 · e ξ n − 1 · t � 1 = n · with ξ a n-th root of unity . Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 5 / 19

  15. How to count, the Frobenius way � � � � (12) + (13) + (23) · (12) + (13) + (23) = 3 · Id +3 · (123) + 3 · (132) Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 6 / 19

  16. How to count, the Frobenius way � � � � (12) + (13) + (23) · (12) + (13) + (23) = 3 · Id +3 · (123) + 3 · (132) Consider the central element R := � t ∈R t of the group algebra C [ W ]. � · t N # { ( t 1 , · · · , t N ) ∈ R N | t 1 · · · t N = c } N ! N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 6 / 19

  17. How to count, the Frobenius way � � � � (12) + (13) + (23) · (12) + (13) + (23) = 3 · Id +3 · (123) + 3 · (132) Consider the central element R := � t ∈R t of the group algebra C [ W ]. � · t N # { ( t 1 , · · · , t N ) ∈ R N | t 1 · · · t N = c } N ! N ≥ 0 � � � · t N R N = c N ! N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 6 / 19

  18. How to count, the Frobenius way � � � � (12) + (13) + (23) · (12) + (13) + (23) = 3 · Id +3 · (123) + 3 · (132) Consider the central element R := � t ∈R t of the group algebra C [ W ]. � · t N # { ( t 1 , · · · , t N ) ∈ R N | t 1 · · · t N = c } N ! N ≥ 0 � � � · t N R N = c N ! N ≥ 0 � � � � R N · c − 1 � · t N = id N ! N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 6 / 19

  19. How to count, the Frobenius way � � � � (12) + (13) + (23) · (12) + (13) + (23) = 3 · Id +3 · (123) + 3 · (132) Consider the central element R := � t ∈R t of the group algebra C [ W ]. � · t N # { ( t 1 , · · · , t N ) ∈ R N | t 1 · · · t N = c } N ! N ≥ 0 � � � · t N R N = c N ! N ≥ 0 � � � � R N · c − 1 � · t N = id N ! N ≥ 0 ! = ! � � R N · c − 1 � · t N 1 | W | Tr C [ W ] N ! N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations FPSAC Ljubljana, July 5, 2019 6 / 19

Recommend


More recommend