matching of meta expressions with recursive bindings
play

Matching of Meta-Expressions with Recursive Bindings David Sabel - PowerPoint PPT Presentation

Matching of Meta-Expressions with Recursive Bindings David Sabel Goethe-University Frankfurt am Main, Germany UNIF 2017, Oxford, UK Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1. 1 Motivation


  1. Matching of Meta-Expressions with Recursive Bindings David Sabel Goethe-University Frankfurt am Main, Germany UNIF 2017, Oxford, UK † Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1. 1

  2. Motivation automated reasoning on programs and program transformations w.r.t. operational semantics for program calculi with higher-order constructs and recursive bindings, e.g. letrec-expressions : letrec x 1 = s 1 ; . . . ; x n = s n in t extended call-by-need lambda calculi with letrec that model core languages of lazy functional programming languages like Haskell 2/18

  3. Application: Correctness of Program Transformations Program transformation T is correct iff ∀ ℓ → r ∈ T : ∀ contexts C : C [ ℓ ] ↓ ⇐ ⇒ C [ r ] ↓ where ↓ = successful evaluation w.r.t. standard reduction 3/18

  4. Application: Correctness of Program Transformations Program transformation T is correct iff ∀ ℓ → r ∈ T : ∀ contexts C : C [ ℓ ] ↓ ⇐ ⇒ C [ r ] ↓ where ↓ = successful evaluation w.r.t. standard reduction Diagram method to show correctness of transformations: Compute overlaps between standard reductions and program transformations (requires unification, see [SSS16, PPDP]) Join the overlaps ⇒ forking and commuting diagrams Induction using the diagrams (automatable, see [RSSS12, IJCAR]) program program transformation transformation σ ( ℓ ′ ) = σ ( ℓ ′ ) = σ ( ℓ ) σ ( r ) σ ( r ) σ ( ℓ ) standard standard * * reduction reduction σ ( r ′ ) σ ( r ′ ) · · * * 3/18

  5. Requirements on the Meta-Language Operational semantics of typical call-by-need calculi (excerpt) Reduction contexts: A ::= [ · ] | ( A e ) R ::= A | letrec Env in A | letrec { x i = A i [ x i +1 ] } n − 1 i =1 , x n = A n , Env in A [ x 1 ] Standard-reduction rules and some program transformations: (SR,lbeta) R [( λx.e 1 ) e 2 ] → R [ letrec x = e 2 in e 1 ] (SR,llet) letrec Env 1 in letrec Env 2 in e → letrec Env 1 , Env 2 in e (T,cpx) T [ letrec x = y, Env in C [ x ]] → T [ letrec x = y, Env in C [ y ]] (T,gc) T [ letrec Env in e ] → T [ e ] if LetVars ( Env ) ∩ FV ( e ) = ∅ 4/18

  6. Requirements on the Meta-Language Operational semantics of typical call-by-need calculi (excerpt) Reduction contexts: A ::= [ · ] | ( A e ) R ::= A | letrec Env in A | letrec { x i = A i [ x i +1 ] } n − 1 i =1 , x n = A n , Env in A [ x 1 ] Standard-reduction rules and some program transformations: (SR,lbeta) R [( λx.e 1 ) e 2 ] → R [ letrec x = e 2 in e 1 ] (SR,llet) letrec Env 1 in letrec Env 2 in e → letrec Env 1 , Env 2 in e (T,cpx) T [ letrec x = y, Env in C [ x ]] → T [ letrec x = y, Env in C [ y ]] (T,gc) T [ letrec Env in e ] → T [ e ] if LetVars ( Env ) ∩ FV ( e ) = ∅ Meta-syntax must be capable to represent: contexts of different classes environments Env i , environment chains { x i = A i [ x i +1 ] } n − 1 i =1 4/18

  7. Requirements on the Meta-Language Operational semantics of typical call-by-need calculi (excerpt) Reduction contexts: A ::= [ · ] | ( A e ) R ::= A | letrec Env in A | letrec { x i = A i [ x i +1 ] } n − 1 i =1 , x n = A n , Env in A [ x 1 ] Standard-reduction rules and some program transformations: (SR,lbeta) R [( λx.e 1 ) e 2 ] → R [ letrec x = e 2 in e 1 ] (SR,llet) letrec Env 1 in letrec Env 2 in e → letrec Env 1 , Env 2 in e (T,cpx) T [ letrec x = y, Env in C [ x ]] → T [ letrec x = y, Env in C [ y ]] (T,gc) T [ letrec Env in e ] → T [ e ] if LetVars ( Env ) ∩ FV ( e ) = ∅ Meta-syntax must be capable to represent: contexts of different classes environments Env i , environment chains { x i = A i [ x i +1 ] } n − 1 i =1 4/18

  8. Requirements on the Meta-Language Operational semantics of typical call-by-need calculi (excerpt) Reduction contexts: A ::= [ · ] | ( A e ) R ::= A | letrec Env in A | letrec { x i = A i [ x i +1 ] } n − 1 i =1 , x n = A n , Env in A [ x 1 ] Standard-reduction rules and some program transformations: (SR,lbeta) R [( λx.e 1 ) e 2 ] → R [ letrec x = e 2 in e 1 ] (SR,llet) letrec Env 1 in letrec Env 2 in e → letrec Env 1 , Env 2 in e (T,cpx) T [ letrec x = y, Env in C [ x ]] → T [ letrec x = y, Env in C [ y ]] (T,gc) T [ letrec Env in e ] → T [ e ] if LetVars ( Env ) ∩ FV ( e ) = ∅ Meta-syntax must be capable to represent: contexts of different classes environments Env i , environment chains { x i = A i [ x i +1 ] } n − 1 i =1 4/18

  9. Requirements on the Meta-Language Operational semantics of typical call-by-need calculi (excerpt) Reduction contexts: A ::= [ · ] | ( A e ) R ::= A | letrec Env in A | letrec { x i = A i [ x i +1 ] } n − 1 i =1 , x n = A n , Env in A [ x 1 ] Standard-reduction rules and some program transformations: (SR,lbeta) R [( λx.e 1 ) e 2 ] → R [ letrec x = e 2 in e 1 ] (SR,llet) letrec Env 1 in letrec Env 2 in e → letrec Env 1 , Env 2 in e (T,cpx) T [ letrec x = y, Env in C [ x ]] → T [ letrec x = y, Env in C [ y ]] (T,gc) T [ letrec Env in e ] → T [ e ] if LetVars ( Env ) ∩ FV ( e ) = ∅ Meta-syntax must be capable to represent: contexts of different classes environments Env i , environment chains { x i = A i [ x i +1 ] } n − 1 i =1 4/18

  10. Syntax of the Meta-Language LRSX x ∈ Var ::= X Variables (variable meta-variable) | x (concrete variable) s ∈ Expr ::= S Expressions (expression meta-variable) | var x (variable) | ( f r 1 . . . r ar ( f ) ) (function application) where r i is o i , s i , or x i specified by f | D [ s ] (context meta-variable) | letrec env in s (letrec-expression) o ∈ HExpr n ::= x 1 . . . . x n .s (higher-order expression) Environments env ∈ Env ::= ∅ (empty environment) | E ; env (environment meta-variable) | Ch [ x, s ]; env (chain meta-variable) | x = s ; env (binding) Context variables D and Ch -variables have a context class cl ( D ) instances of Ch [ x, s ] : chains x = D 1 [ var x 1 ]; x 1 = D 2 [ var x 2 ]; . . . ; x n = D n [ s ] where D i are contexts of class cl ( Ch ) . 5/18

  11. Binding and Scoping Constraints Operational semantics of typical call-by-need calculi (excerpt) Reduction contexts: A ::= [ · ] | ( A e ) R ::= A | letrec Env in A | letrec { x i = A i [ x i +1 ] } n − 1 i =1 , x n = A n , Env in A [ x 1 ] Standard-reduction rules and some program transformations: (SR,lbeta) R [( λx.e 1 ) e 2 ] → R [ letrec x = e 2 in e 1 ] (SR,llet) letrec Env 1 in letrec Env 2 in e → letrec Env 1 , Env 2 in e (T,cpx) T [ letrec x = y, Env in C [ x ]] → T [ letrec x = y, Env in C [ y ]] (T,gc) T [ letrec Env in e ] → T [ e ] if LetVars ( Env ) ∩ FV ( e ) = ∅ restrictions on scoping and emptiness have to be respected, e.g.: (gc): Env must not be empty; side condition on variables (llet): FV ( Env 1 ) ∩ LetVars ( Env 2 ) = ∅ (cpx): x, y are not captured by C in C [ x ] 6/18

  12. Binding and Scoping Constraints Operational semantics of typical call-by-need calculi (excerpt) Reduction contexts: A ::= [ · ] | ( A e ) R ::= A | letrec Env in A | letrec { x i = A i [ x i +1 ] } n − 1 i =1 , x n = A n , Env in A [ x 1 ] Standard-reduction rules and some program transformations: (SR,lbeta) R [( λx.e 1 ) e 2 ] → R [ letrec x = e 2 in e 1 ] (SR,llet) letrec Env 1 in letrec Env 2 in e → letrec Env 1 , Env 2 in e (T,cpx) T [ letrec x = y, Env in C [ x ]] → T [ letrec x = y, Env in C [ y ]] (T,gc) T [ letrec Env in e ] → T [ e ] if LetVars ( Env ) ∩ FV ( e ) = ∅ restrictions on scoping and emptiness have to be respected, e.g.: (gc): Env must not be empty; side condition on variables (llet): FV ( Env 1 ) ∩ LetVars ( Env 2 ) = ∅ (cpx): x, y are not captured by C in C [ x ] 6/18

  13. Binding and Scoping Constraints Operational semantics of typical call-by-need calculi (excerpt) Reduction contexts: A ::= [ · ] | ( A e ) R ::= A | letrec Env in A | letrec { x i = A i [ x i +1 ] } n − 1 i =1 , x n = A n , Env in A [ x 1 ] Standard-reduction rules and some program transformations: (SR,lbeta) R [( λx.e 1 ) e 2 ] → R [ letrec x = e 2 in e 1 ] (SR,llet) letrec Env 1 in letrec Env 2 in e → letrec Env 1 , Env 2 in e (T,cpx) T [ letrec x = y, Env in C [ x ]] → T [ letrec x = y, Env in C [ y ]] (T,gc) T [ letrec Env in e ] → T [ e ] if LetVars ( Env ) ∩ FV ( e ) = ∅ restrictions on scoping and emptiness have to be respected, e.g.: (gc): Env must not be empty; side condition on variables (llet): FV ( Env 1 ) ∩ LetVars ( Env 2 ) = ∅ (cpx): x, y are not captured by C in C [ x ] 6/18

  14. Binding and Scoping Constraints Operational semantics of typical call-by-need calculi (excerpt) Reduction contexts: A ::= [ · ] | ( A e ) R ::= A | letrec Env in A | letrec { x i = A i [ x i +1 ] } n − 1 i =1 , x n = A n , Env in A [ x 1 ] Standard-reduction rules and some program transformations: (SR,lbeta) R [( λx.e 1 ) e 2 ] → R [ letrec x = e 2 in e 1 ] (SR,llet) letrec Env 1 in letrec Env 2 in e → letrec Env 1 , Env 2 in e (T,cpx) T [ letrec x = y, Env in C [ x ]] → T [ letrec x = y, Env in C [ y ]] (T,gc) T [ letrec Env in e ] → T [ e ] if LetVars ( Env ) ∩ FV ( e ) = ∅ restrictions on scoping and emptiness have to be respected, e.g.: (gc): Env must not be empty; side condition on variables (llet): FV ( Env 1 ) ∩ LetVars ( Env 2 ) = ∅ (cpx): x, y are not captured by C in C [ x ] 6/18

Recommend


More recommend