coxeter numbers from fake degree palindromicity to the
play

Coxeter numbers: From fake degree palindromicity to the enumeration - PowerPoint PPT Presentation

Coxeter numbers: From fake degree palindromicity to the enumeration of reflection factorizations. Theo Douvropoulos Paris VII, IRIF ERC CombiTop November 21, 2018 Theo Douvropoulos (Paris VII, IRIF) How to count reflection


  1. Coxeter numbers: From fake degree palindromicity to the enumeration of reflection factorizations. Theo Douvropoulos � � Paris VII, IRIF ERC CombiTop November 21, 2018 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 1 / 23

  2. The number of reduced reflection factorizations of c Theorem (Hurwitz, 1892) There are n n − 2 (minimal length) factorizations t 1 · · · t n − 1 = (12 · · · n ) ∈ S n where the t i ’s are transpositions. Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 2 / 23

  3. The number of reduced reflection factorizations of c Theorem (Hurwitz, 1892) There are n n − 2 (minimal length) factorizations t 1 · · · t n − 1 = (12 · · · n ) ∈ S n where the t i ’s are transpositions. For example, the 3 1 factorizations (12)(23) = (123) (13)(12) = (123) (23)(13) = (123) . Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 2 / 23

  4. The number of reduced reflection factorizations of c Theorem (Hurwitz, 1892) There are n n − 2 (minimal length) factorizations t 1 · · · t n − 1 = (12 · · · n ) ∈ S n where the t i ’s are transpositions. For example, the 3 1 factorizations (12)(23) = (123) (13)(12) = (123) (23)(13) = (123) . Theorem (Deligne-Arnol’d-Bessis) For a well-generated, complex reflection group W , with Coxeter number h, there are h n n ! | W | (minimal length) reflection factorizations t 1 · · · t n = c of the Coxeter element c. Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 2 / 23

  5. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact S n , c ( N ) t N FAC S n , c ( t ) = N ! . N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 3 / 23

  6. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact S n , c ( N ) t N FAC S n , c ( t ) = N ! . N ≥ 0 Theorem (Jackson, ’88) If c = (12 · · · n ) ∈ S n , then FAC S n , c ( t ) = e t ( n 2 ) � 1 − e − tn � n − 1 . n ! Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 3 / 23

  7. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact S n , c ( N ) t N FAC S n , c ( t ) = N ! . N ≥ 0 Theorem (Jackson, ’88) If c = (12 · · · n ) ∈ S n , then FAC S n , c ( t ) = e t ( n 2 ) � 1 − e − tn � n − 1 . n ! Notice that � � t n − 1 FAC S n , c ( t ) = 1 n ! · ( n ) n − 1 · ( n − 1)! = n n − 2 . ( n − 1)! Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 3 / 23

  8. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact W , c ( N ) t N FAC W , c ( t ) = N ! . N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 4 / 23

  9. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact W , c ( N ) t N FAC W , c ( t ) = N ! . N ≥ 0 Theorem (Chapuy-Stump, ’12) If W is well-generated, of rank n, and h is the order of the Coxeter element c, then FAC W , c ( t ) = e t |R| � 1 − e − th � n . | W | Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 4 / 23

  10. Arbitrary length reflection factorizations of c If R denotes the set of reflections of W , we write Fact W , c ( N ) := # { ( t 1 , · · · , t N ) ∈ R n | t 1 · · · t N = c } . Now, consider the exponential generating function: � Fact W , c ( N ) t N FAC W , c ( t ) = N ! . N ≥ 0 Theorem (Chapuy-Stump, ’12) If W is well-generated, of rank n, and h is the order of the Coxeter element c, then FAC W , c ( t ) = e t |R| � 1 − e − th � n . | W | Notice that � t n � | W | · h n · n ! = h n n ! 1 FAC W , c ( t ) = | W | . n ! Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 4 / 23

  11. A brief history of the W -Hurwitz number h n n ! | W | Some proofs and some mathematical shadows: Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 5 / 23

  12. A brief history of the W -Hurwitz number h n n ! | W | Some proofs and some mathematical shadows: Deligne-Tits-Zagier, rediscovered by Reading. 1 Enumerate factorizations t 1 · · · t n = c with respect to the c -orbit of t n : � Hur( W ) = h Hur( W � s � ) 2 s ∈ S Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 5 / 23

  13. A brief history of the W -Hurwitz number h n n ! | W | Some proofs and some mathematical shadows: Deligne-Tits-Zagier, rediscovered by Reading. 1 Enumerate factorizations t 1 · · · t n = c with respect to the c -orbit of t n : � Hur( W ) = h Hur( W � s � ) 2 s ∈ S Chapoton. Interpretation as the number of maximal chains of NC ( W ): 2 � � � n X n hX + d i Hur( W ) = n ! d i i =1 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 5 / 23

  14. A brief history of the W -Hurwitz number h n n ! | W | Some proofs and some mathematical shadows: Deligne-Tits-Zagier, rediscovered by Reading. 1 Enumerate factorizations t 1 · · · t n = c with respect to the c -orbit of t n : � Hur( W ) = h Hur( W � s � ) 2 s ∈ S Chapoton. Interpretation as the number of maximal chains of NC ( W ): 2 � � � n X n hX + d i Hur( W ) = n ! d i i =1 Lyashko-Looijenga and Bessis. 3 There exist two subgroups G 1 ≤ G 2 ≤ B n of the braid group B n on n strands, with finite indexes ν 1 and ν 2 such that: ν 1 = h n n ! ν 2 = # { reduced reflection factorizations of c } | W | Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 5 / 23

  15. How to count, the Frobenius way Consider the central element R := � t ∈R t of the group algebra C [ W ]. � · t N # { ( t 1 , · · · , t N ) ∈ R N | t 1 · · · t N = c } N ! N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 6 / 23

  16. How to count, the Frobenius way Consider the central element R := � t ∈R t of the group algebra C [ W ]. � · t N # { ( t 1 , · · · , t N ) ∈ R N | t 1 · · · t N = c } N ! N ≥ 0 � � � · t N R N = c N ! N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 6 / 23

  17. How to count, the Frobenius way Consider the central element R := � t ∈R t of the group algebra C [ W ]. � · t N # { ( t 1 , · · · , t N ) ∈ R N | t 1 · · · t N = c } N ! N ≥ 0 � � � · t N R N = c N ! N ≥ 0 � � � � R N · c − 1 � · t N = id N ! N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 6 / 23

  18. How to count, the Frobenius way Consider the central element R := � t ∈R t of the group algebra C [ W ]. � · t N # { ( t 1 , · · · , t N ) ∈ R N | t 1 · · · t N = c } N ! N ≥ 0 � � � · t N R N = c N ! N ≥ 0 � � � � R N · c − 1 � · t N = id N ! N ≥ 0 ! = ! � � R N · c − 1 � · t N 1 | W | Tr C [ W ] N ! N ≥ 0 Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 6 / 23

  19. How to count, the Frobenius way Consider the central element R := � t ∈R t of the group algebra C [ W ]. � · t N # { ( t 1 , · · · , t N ) ∈ R N | t 1 · · · t N = c } N ! N ≥ 0 � � � · t N R N = c N ! N ≥ 0 � � � � R N · c − 1 � · t N = id N ! N ≥ 0 ! = ! � � R N · c − 1 � · t N 1 | W | Tr C [ W ] N ! N ≥ 0 � � � R N · c − 1 � · t N 1 = | W | · dim( χ ) · χ N ! N ≥ 0 χ ∈ � W Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 6 / 23

  20. How to count, the Frobenius way Consider the central element R := � t ∈R t of the group algebra C [ W ]. � � � R N · c − 1 � t N 1 = | W | · dim( χ ) · χ · N ! N ≥ 0 χ ∈ � W Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 7 / 23

  21. How to count, the Frobenius way Consider the central element R := � t ∈R t of the group algebra C [ W ]. � � � R N · c − 1 � t N 1 = | W | · dim( χ ) · χ · N ! N ≥ 0 χ ∈ � W � χ ( R ) � N � � t N 1 · χ ( c − 1 ) · = | W | · χ (1) · χ (1) N ! N ≥ 0 χ ∈ � W Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 7 / 23

Recommend


More recommend