on computing the resultant of generic bivariate
play

On Computing the Resultant of Generic Bivariate Polynomials Gilles - PowerPoint PPT Presentation

On Computing the Resultant of Generic Bivariate Polynomials Gilles Villard ISSAC, New York, July 17th, 2018 Outline of the talk Appetizer The problem New algorithm: A key ingredient A central remark Outline of the talk Appetizer The


  1. On Computing the Resultant of Generic Bivariate Polynomials Gilles Villard ISSAC, New York, July 17th, 2018

  2. Outline of the talk Appetizer The problem New algorithm: A key ingredient A central remark

  3. Outline of the talk Appetizer The problem New algorithm: A key ingredient A central remark

  4. Minimal polynomial in a field extension g ( y ) = y 4 + 10 y 3 + 3 y 2 + 7 y + 4 mod 11 픸 = 햪 [ y ]/ g ( y ) α ( y ) = y 4 + 4 y 2 + 8 y + 9 ∈ 픸 α ( y ) 2 + α ( y ) + 4 = 0 Find the relation ?

  5. Minimal polynomial in a field extension 픸 = 햪 [ y ]/ g ( y ) deg g = n α ( y ) ∈ 픸 μ ( y ) monic (and irreducible) such that μ ( α ( y )) ≡ 0 mod g ( y ) α n ( y ) + μ n − 1 α n − 1 ( y ) + … + μ 1 α ( y ) + μ 0 ≡ 0 mod g ( y ) ? Generic case: μ ( y ) = χ ( y )

  6. Projection for saving operations: use a K- linear map : π : 햪 [ y ]/ g ( y ) → 햪

  7. [Ly 1989] Minimal polynomial in a field extension [Rifà, Borrell 1991] [Shoup 1994] π (1), π ( α ), π ( α 2 ), …, π ( α 2 n − 1 ) 1. Compute /* The sequence is linearly generated over */ 햪 2. Compute the minimal polynomial of the sequence using e.g. a Euclidean scheme or the Berlekamp-Massey algorithm Nota. One uses the trace and Leverrier’s approach for the characteristic polynomial .

  8. MinPoly / CharPoly μ ( α ) ≡ 0 mod g O ˜ ( n ) PowerProjections π : 픸 → 햪 π (1), π ( α ), π ( α 2 ), …, π ( α 2 n − 1 )

  9. 픸 = 햪 [ y ]/ g ( y ) ≃ 햪 n 1 1 π 2 … α 0 α 1 α 2 … α n − 1 π n − 1 ] ⋅ [ π 0 π 1 1 1 Left matrix-vector product PowerProjections π : 픸 → 햪 π (1), π ( α ), π ( α 2 ), …, π ( α 2 n − 1 )

  10. 픸 = 햪 [ y ]/ g ( y ) ≃ 햪 n h 0 1 1 h 1 ⋅ h 2 π 2 … α 0 α 1 α 2 … α n − 1 π n − 1 ] ⋅ [ π 0 π 1 ⋮ 1 h n − 1 1 Left matrix-vector product Right matrix-vector product PowerProjections Modular Composition π : 픸 → 햪 For a polynomial h π (1), π ( α ), π ( α 2 ), …, π ( α 2 n − 1 ) h ( α ) mod g ?

  11. Transposition principle [Shoup 94] [Canny, Kaltofen, Yagati 1989] [Kaltofen 2000] O ( n ) PowerProjections Modular Composition π : 픸 → 햪 For a polynomial h π (1), π ( α ), π ( α 2 ), …, π ( α 2 n − 1 ) h ( α ) mod g ?

  12. MinPoly / CharPoly μ ( α ) ≡ 0 mod g O ˜ ( n ) O ( n ) PowerProjections Modular Composition π : 픸 → 햪 For a polynomial h π (1), π ( α ), π ( α 2 ), …, π ( α 2 n − 1 ) h ( α ) mod g ?

  13. Minimal polynomial in a field extension Modular MinPoly / CharPoly ⟹ Composition O ˜ ( n 2 ) operations in 햪 Baby steps / giant steps strategy [Paterson, Stockmeyer 1973] O ˜ ( n ω 2 /2 ) ⟹ O ( n 1.626 ) [Brent & Kung 1978] [Shoup 1994] n × n ) ⋅ ( n × n ) ( [Huang, Pan 1998] [Kaltofen 2000] [Bostan, Flajolet, Salvy, Schost 2006] [Le Gall, Urrutia 2018]

  14. Improvement for generic polynomials Particular case of the resultant approach α ( y ) ∈ 픸 Multiplication endomorphism: A : u ↦ α u Characteristic polynomial 1 1 1 1 x I − A ? A det … α n − 1 α 0 α 1 α 2 α 0 α 1 α 2 … α n − 1 1 1 1 1 n × n

  15. Outline of the talk Appetizer The problem New algorithm: A key ingredient A central remark

  16. A ( x ) ∈ 햪 [ x ] n × n ‘’structured’’ polynomial matrix det A ( x ) ? Ex: Toeplitz, Sylvester matrix, Frobenius matrix algebra, etc.

  17. Entries in K p , q ∈ 햪 [ x ] Sylvester matrix deg p , q = n p n q n p n − 1 p n q n − 1 q n ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ p n ⋮ ⋮ q n ∈ 햪 2 n × 2 n S = ⋮ ⋮ p 0 p n − 1 q 0 q n − 1 p 0 ⋮ q 0 ⋮ ⋱ ⋮ ⋱ ⋮ p 0 q 0 Res( p , q ) = det S ∈ 햪 ? O ˜ ( n ) Knuth-Schönhage-Moenck recursive polynomial gcd: operations [Bini, Pan 1994] [von zur Gathen, Gerhard 1999]

  18. Rule of thumb: Cost over Cost over 햪 Output degree ⪯ × 햪 [ x ] (Evaluation-interpolation scheme)

  19. Entries in K[x] p , q ∈ 햪 [ x , y ] deg x = 1, deg y = n p n ( x ) q n ( x ) p n − 1 ( x ) p n ( x ) q n − 1 ( x ) q n ( x ) ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ p n ( x ) ⋮ ⋮ q n ( x ) ∈ 햪 [ x ] 2 n × 2 n S ( x ) = ⋮ ⋮ p 0 ( x ) p n − 1 ( x ) q 0 ( x ) q n − 1 ( x ) p 0 ( x ) ⋮ q 0 ( x ) ⋮ ⋱ ⋮ ⋱ ⋮ p 0 ( x ) q 0 ( x ) det S ( x ) ? Output degree: 2 n O ˜ ( n × n ) = O ˜ ( n 2 ) operations points 2 n ⟹

  20. ? Rule of thumb: Cost over Cost over 햪 Output degree ⪯ × 햪 [ x ] (Evaluation-interpolation scheme)

  21. [Storjohann 2003-2005] [Labahn, Neiger, Zhou 2017] Dense polynomial matrices A ( x ) ∈ 햪 [ x ] n × n Degree: d Output degree: nd Determinant in O ˜ ( n ω d ) ≪ O ˜ ( n ω × nd ) operations in 햪

  22. [Beckermann, Labahn 1994] [Giorgi et al. 2003] Dense matrix fractions Generic case H ( x ) = R ( x ) Q ( x ) − 1 ∈ 햪 [ x ] n × n of degree d R , Q Matrix fraction reconstruction: H ( x ) = Σ i H i x i from terms of O ( d ) in O ˜ ( n ω d ) operations in 햪

  23. The problem To simplify: deg x = 1 p n ( x ) q n ( x ) p n − 1 ( x ) p n ( x ) q n − 1 ( x ) q n ( x ) ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ∈ 햪 [ x ] 2 n × 2 n p n ( x ) q n ( x ) S ( x ) = p 0 ( x ) ⋮ p n − 1 ( x ) q 0 ( x ) ⋮ q n − 1 ( x ) ⋮ ⋮ p 0 ( x ) q 0 ( x ) ⋱ ⋮ ⋱ ⋮ p 0 ( x ) q 0 ( x ) det S ( x ) ? Best known complexity bound O ˜ ( n 2 ) Size of a system solution ( entries of degree ) n 2 n

  24. New algorithm From 10.000 feet

Recommend


More recommend