on categorical models of goi lecture 2
play

On Categorical Models of GoI Lecture 2 Esfandiar Haghverdi School - PowerPoint PPT Presentation

On Categorical Models of GoI Lecture 2 Esfandiar Haghverdi School of Informatics and Computing Indiana University Bloomington USA August 25, 2009 Esfandiar Haghverdi On Categorical Models of GoILecture 2 In this lecture We shall discuss


  1. On Categorical Models of GoI Lecture 2 Esfandiar Haghverdi School of Informatics and Computing Indiana University Bloomington USA August 25, 2009 Esfandiar Haghverdi On Categorical Models of GoILecture 2

  2. In this lecture ◮ We shall discuss constructions based on a GoI Situation. ◮ I shall follow the papers: Haghverdi (MSCS 2000), Abramsky, Haghverdi & Scott (MSCS 2002). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  3. Abramsky’s Program: GoI Situation G ↓ Weak Linear Categories G ( C )( I , V ) ↓ Linear Combinatory Algebra standardisation ↓ Combinatory Algebra quotienting ↓ λ -algebra Esfandiar Haghverdi On Categorical Models of GoILecture 2

  4. GoI construction (Abramsky), Int construction (JSV) C ❀ G ( C ) ◮ Objects: ( A + , A − ) where A + and A − are objects of C . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  5. GoI construction (Abramsky), Int construction (JSV) C ❀ G ( C ) ◮ Objects: ( A + , A − ) where A + and A − are objects of C . ◮ Arrows: An arrow f : ( A + , A − ) − → ( B + , B − ) in G ( C ) is f : A + ⊗ B − − → A − ⊗ B + in C . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  6. GoI construction (Abramsky), Int construction (JSV) C ❀ G ( C ) ◮ Objects: ( A + , A − ) where A + and A − are objects of C . ◮ Arrows: An arrow f : ( A + , A − ) − → ( B + , B − ) in G ( C ) is f : A + ⊗ B − − → A − ⊗ B + in C . ◮ Identity: 1 ( A + , A − ) = s A + , A − . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  7. GoI construction (Abramsky), Int construction (JSV) C ❀ G ( C ) ◮ Objects: ( A + , A − ) where A + and A − are objects of C . ◮ Arrows: An arrow f : ( A + , A − ) − → ( B + , B − ) in G ( C ) is f : A + ⊗ B − − → A − ⊗ B + in C . ◮ Identity: 1 ( A + , A − ) = s A + , A − . ◮ Composition: Composition is given by symmetric feedback. Given f : ( A + , A − ) − → ( B + , B − ) and g : ( B + , B − ) − → ( C + , C − ), gf : ( A + , A − ) − → ( C + , C − ) is given by: gf = Tr B − ⊗ B + A + ⊗ C − , A − ⊗ C + ( β ( f ⊗ g ) α ) where α = (1 A + ⊗ 1 B − ⊗ s C − , B + )(1 A + ⊗ s C − , B − ⊗ 1 B + ) and β = (1 A − ⊗ 1 C + ⊗ s B + , B − )(1 A − ⊗ s B + , C + ⊗ 1 B − )(1 A − ⊗ 1 B + ⊗ s B − , C + ). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  8. In pictures − + A A − f + B B + − B B − g + C C Esfandiar Haghverdi On Categorical Models of GoILecture 2

  9. Monoidal structure ◮ Tensor: ( A + , A − ) ⊗ ( B + , B − ) = ( A + ⊗ B + , A − ⊗ B − ) and for f : ( A + , A − ) − → ( B + , B − ) and g : ( C + , C − ) − → ( D + , D − ), f ⊗ g = (1 A − ⊗ s B + , C − ⊗ 1 D + )( f ⊗ g )(1 A + ⊗ s C + , B − ⊗ 1 D − ) ◮ Unit: ( I , I ). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  10. Proposition Let C be a traced symmetric monoidal category , G ( C ) defined as above is a compact closed category. Moreover, F : C − → G ( C ) with F ( A ) = ( A , I ) and F ( f ) = f is a full and faithful embedding. This says that any traced symmetric monoidal category C arises as a monoidal subcategory of a compact closed cateorgy, namely G ( C ). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  11. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  12. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . ◮ The dual of ( A + , A − ) is given by ( A + , A − ) ∗ = ( A − , A + ) Esfandiar Haghverdi On Categorical Models of GoILecture 2

  13. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . ◮ The dual of ( A + , A − ) is given by ( A + , A − ) ∗ = ( A − , A + ) → ( A + , A − ) ⊗ ( A + , A − ) ∗ = def s A − , A + ◮ unit, η : ( I , I ) − Esfandiar Haghverdi On Categorical Models of GoILecture 2

  14. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . ◮ The dual of ( A + , A − ) is given by ( A + , A − ) ∗ = ( A − , A + ) → ( A + , A − ) ⊗ ( A + , A − ) ∗ = def s A − , A + ◮ unit, η : ( I , I ) − ◮ counit, ǫ : ( A + , A − ) ∗ ⊗ ( A + , A − ) − → ( I , I ) = def s A − , A + . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  15. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . ◮ The dual of ( A + , A − ) is given by ( A + , A − ) ∗ = ( A − , A + ) → ( A + , A − ) ⊗ ( A + , A − ) ∗ = def s A − , A + ◮ unit, η : ( I , I ) − ◮ counit, ǫ : ( A + , A − ) ∗ ⊗ ( A + , A − ) − → ( I , I ) = def s A − , A + . ◮ The internal homs, ◦ ( B + , B − ) = ( B + ⊗ A − , B − ⊗ A + ). ( A + , A − ) − Esfandiar Haghverdi On Categorical Models of GoILecture 2

  16. Useful facts ◮ Let A + ∼ = B + and A − ∼ = B − in C , then ( A + , A − ) ∼ = ( B + , B − ) in G ( C ). ◮ If A + ✁ B + ( f 1 , g 1 ) and A − ✁ B − ( f 2 , g 2 ) in C , then ( A + , A − ) ✁ ( B + , B − ) ( s B + , A − ( f 1 ⊗ g 2 ) , s A + , B − ( g 1 ⊗ f 2 )) in G ( C ). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  17. Weak Linear Category (WLC) Definition A Weak Linear Category (WLC) ( C , !) consists of the following data: ◮ A symmetric monoidal closed category C , ◮ A symmetric monoidal functor ! : C − → C (officially, ! = (! , ϕ, ϕ I )), ◮ The following monoidal pointwise natural transformations: 1. der :! ⇒ Id 2. δ :! ⇒ !! 3. con :! ⇒ ! ⊗ ! 4. weak :! ⇒ K I . Here K I is the constant I functor. Esfandiar Haghverdi On Categorical Models of GoILecture 2

  18. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA Esfandiar Haghverdi On Categorical Models of GoILecture 2

  19. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA ◮ In the GoI models we discuss the monoidal transformations der , δ, con , weak exist but are merely pointwise natural Esfandiar Haghverdi On Categorical Models of GoILecture 2

  20. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA ◮ In the GoI models we discuss the monoidal transformations der , δ, con , weak exist but are merely pointwise natural ◮ Pointwise naturality suffices for the construction of linear combinatory algebras Esfandiar Haghverdi On Categorical Models of GoILecture 2

  21. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA ◮ In the GoI models we discuss the monoidal transformations der , δ, con , weak exist but are merely pointwise natural ◮ Pointwise naturality suffices for the construction of linear combinatory algebras ◮ We do not require (! , der , δ ) to form a comonad, Esfandiar Haghverdi On Categorical Models of GoILecture 2

  22. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA ◮ In the GoI models we discuss the monoidal transformations der , δ, con , weak exist but are merely pointwise natural ◮ Pointwise naturality suffices for the construction of linear combinatory algebras ◮ We do not require (! , der , δ ) to form a comonad, ◮ We do not require (! A , con A , weak A ) to form a comonoid. Esfandiar Haghverdi On Categorical Models of GoILecture 2

  23. Reflexive object Definition A reflexive object in a WLC ( C , !) is an object V in C with the following retracts: ◮ V − ◦ V ✁ V ◮ ! V ✁ V ◮ I ✁ V Esfandiar Haghverdi On Categorical Models of GoILecture 2

  24. Another remark Since CCCs are SMCCs, all the usual domain theoretic constructions of reflexive objects in CCCs also yield reflexive objects in the WLC-sense, as follows: Proposition Let C be a CCC and V be a reflexive object in C , i.e., V V ✁ V . Then ( C , Id ) is a WLC and V is a reflexive object in the WLC-sense. Esfandiar Haghverdi On Categorical Models of GoILecture 2

Recommend


More recommend