mpe s views on sdds as focal plane detectors for sfa
play

MPE's views on SDDs as focal plane detectors for SFA - Overview: - PowerPoint PPT Presentation

eXTP meeting (eXTP: enhanced X-ray Timing and Polarization mission) Shanghai, 30th March 1st April 2016 MPE's views on SDDs as focal plane detectors for SFA - Overview: MPE HEG space projects XMM-Newton EPIC-PN, eROSITA, Athena WFI - Our


  1. eXTP meeting (eXTP: enhanced X-ray Timing and Polarization mission) Shanghai, 30th March – 1st April 2016 MPE's views on SDDs as focal plane detectors for SFA - Overview: MPE HEG space projects XMM-Newton EPIC-PN, eROSITA, Athena WFI - Our concepts for spectroscopic detectors - Our SDDs as focal plane detectors o principle – features – details – examples eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  2. MPE HEG space projects ESA XMM-Newton with PNCCD camera (1999 – today) • First generation of PNCCDs: • developed for X-ray astronomy: XMM-Newton • Satellite launch: 1999 • Pixel size: 150µm x 150µm (4.1 arcsec) • 12 CCDs: 64 x 200 pixels • Long term stability of pnCCD detector ∆FHHM/FWHM < 2eV/155eV/y≈ 1%/y (EPIC-PN camera) aboard XMM-Newton: - all 12 CCDs are still operating - same operating parameters (T = -90°C) - quantum efficiency unchanged - slight radiation damage as expected: CTI eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  3. MPE HEG space projects XMM-Newton PNCCD camera eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  4. MPE HEG space projects eROSITA (extended Roentgen survey with an imaging telescope array) eROSITA • all-sky survey : 4 y (/7.5y) - soft band: 30 x sensitivity of ROSAT - hard band (>2keV): first all-sky survey • test of cosmological model (Dark Energy) f=1600 mm • eROSITA telescope developed unter responsibility of MPE • Wolter -I mirror system : 54 shells • PSF: 15‘‘ resolution (HEW) on -axis • FoV: 1.0 ° diam . • Russian SRG satellite → L2 orbit (2017) eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE 4

  5. eROSITA PNCCD Detector advanced type of XMM-Newton PNCCD back-illuminated frame-transfer CCD chip thickness (= 450 µm) fully sensitive image: 384 x 384 pixels of 75 x 75 µm 2 size column-parallel: 384 independent channels frame transfer: 0.12 ms CAMEX: analog signal processor readout time: 9 ms time resolution: 50 ms • on-board event processing • minimiz . heat dissipation (≈ 80% standby ) → 0.7 W OOT events ≈ 0.2% excellent low energy response eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  6. eROSITA detector: • PNCCD • eROSITA CAMEX Multi-layer detector board • • Flexible lead as I/F to CE Detector housing : Mech . + thermal I/F • • Graded Z-shield: Be /B 4 C - Al - Cu eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  7. MPE HEG space projects eROSITA with 7 PNCCD cameras on SRG satellite Filter wheel Camera Head Camera Electronics Array of 7 PNCCD focal plane cameras: eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  8. Energy resolution 55 Fe spectrum: FWHM(5.9keV) = 131 eV Mn-K α Mn-K α Mn-K β Si escape peaks Al-K Mn-K β Signal spread over up to 4 pixels eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  9. Intensity distribution over image area Al-K of X-ray tube (QM_140123_06) eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  10. eROSITA PNCCD detector characteristics Sensor PNCCD Illumination type back-illumination Image area 384 x 384 pixels Pixel size 75 µm x 75 µm (< 10 arcsec) 128-channel eROSITA CAMEX Readout ASIC (3 ASICs per PNCCD) Read noise 2.4 electrons ENC rms FWHM(0.53 keV ) ≈ 62 eV Energy resolution FWHM(5.9 keV ) ≈ 140 eV Operating temperature -95°C (best wrt radiation damage) E = 1 keV: 89% (on-chip-filter) Quantum efficiency E = 5 keV: 99% (on-chip filter) Readout time 9.2 ms Time resolution 50 ms eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  11. MPE HEG space projects Mirror system: f = 12 m Aeff ≈ 2 m² at 1 keV X-IFU: X-ray micro- Calorimeter ∆E=2.5eV T=50mK Wide Field Imager: • unprecedented survey power ( FoV = 40`x40`) • high count-rate capability (1 Crab) • E=[0.2 keV – 15 keV ] state-of-the-art energy resolution • focal plane detectors: DEPFET APS (enhanced type of DEPFET MIXS detector for BepiColombo) • WFI consortium with MPE as lead institute eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE 11

  12. MPE HEG space projects Wide field imager (WFI) for ESA‘s Athena DEPFET APS Detectors for WFI on Athena Heritage: MIXS on BepiColombo eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  13. Focal plane layout Pointing on large or fast WFI detector Large FoV detector • 40` x 40` by 1024 x 1024 pixel ↔ Size ≈ 14 x 14 cm 2 • 4 independent + identical quadrants • requirement: <5ms/frame → <10µs/ row • 2-side buttable DEPFETs High count-rate capable detector • FoV = 143`` x 143`` ↔ Size ≈ 8.3 x 8.3 mm 2 Pixel: 130 µm x 130 µm ( ↔ 2.23 ``) • 64 x 64 pixels subdivided in 2 halves • ⇒ accurate source position reconstruction • requirement: 80µs/frame → 2.5µs/ row (splits!) for PSF = 5ʾʾ HEW • mounted defocussed Control ASIC: 3-port Switcher-A • • Readout ASIC: VERITAS -2 eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE 13

  14. Main WFI Requirements / Characteristics Parameter Value Energy Range 0.2 - 15 keV Field of View 40’ x 40’ Angular Resolution PSF=5`` (on -axis) 130 x 130 µm 2 ( 2.2``) Pixel Size Large DEPFET detector 1024 x 1024 pixel (4 quadrants) =14cmx14cm Fast DEPFET detector 64 x 64 pixel (split full frame mode - 2 halves readout) Operating mode Rolling shutter Operating time Nonstop possible 20% @ 277 eV Quantum efficiency 80% @ 1 keV (on- chip + ext. filter w. mesh) 90% @ 10 keV FWHM(1 keV) ≤ 80 eV (end of life) Energy Resolution FWHM(7 keV) ≤ 170 eV (end of life) Time Resolution full frame Fast detector 80 μs Large detector <5 ms Fast DEPFET (defocused) Count Rate Capability 1 Crab: >80% throughput, <1% pile-up < 5 × 10 -3 cts cm -2 s -1 keV -1 Particle Background (L2 orbit) Lifetime 5 y + extension (launch 2028) eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE 14

  15. Space projects with SDD detectors produced at MPI HLL • SDD detectors produced at MPI HLL NASA Mars Rovers: • SPIRIT and OPPORTUNITY (01/2004) • CURIOSITY (08/2012) • ESA's Rosetta (67P/ Tschurjumow-Gerasimenko) • µRosi on Max Vallier satellite eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  16. Our concepts for spectroscopic detectors Features: • Ultrapure FZ silicon wafers ( ∅ = 150 mm) • Double-sided processing permits full depletion of 450 µm Si → high QE at high X-ray energies • First stage of signal amplification (transistor) integrated on-chip → low readout noise • Back-illuminated detectors → uniform QE over detector area • Shallow p-implant of photon entrance window → high QE at low energies + high p/b ratio • Deposition of on-chip light filter (Al) → "no" signal by visual light eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  17. Our concepts for spectroscopic detectors Quantum efficiency no on-chip light filter 450 µm Si 300 µm Si Fe-K α eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  18. Our concepts for spectroscopic detectors Energy resolution 55 Fe spectrum: BESSY synchrotron: FWHM(200eV) = 52 eV FWHM(5.9keV) = 130 eV E = 200eV Mn-K α Mn-K β Gaussian shape ! (measured with eROSITA PNCCD but similar for the other detectors) eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  19. Our concepts for spectroscopic detectors • Concept requires adequate process technology → developed at MPI HLL • Basic spectroscopic detector concepts: - Silicon drift detectors readout node / cell time resolution : µs → fastest spectroscopic detector spatial resolution possible by array of SDD cells eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  20. Our concepts for spectroscopic detectors - PNCCD full-column-parallel CCD: readout node / ch . time resolution: ms → spectroscopic + imaging detector - DEPFET active pixel sensor readout node / pixel CCD-like but even faster + more radiation hard → window mode (readout of selected sensor rows ) eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  21. SDD principle & development original concept by Gatti & Rehak, 1983  depleted volume  transverse electric field  particle tracking spectroscopy adaptation by Kemmer & Lutz, 1984  uniform back contact = entrance window on-chip transistor HLL, 1993  integration of first amplification stage eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  22. Our SDD features • SDDs developed and produced at MPI HLL (MPE & MPP + Ketek + PNSensor) • Drift rings with nJFET in "center" • Integration of first transistor on-chip → robustness wrt microphonic noise + electrical pickup • Small capacitance 35fF → low noise level + high count rate capability • Depletion voltage ≈ - 100 V • Cell area: 5 mm 2 … cm 2 • good peak-to-valley ratio ≈ 15.000:1 (for SD3 with int. collimator ) eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

  23. SDD features • Example: 10 mm 2 SDD, T=- 17 °C , 1 µs shaping, pulsed reset 1kHz: FWHM(5.9keV) ≈ 134 eV @ 10 5 photons / s • Array of SDD cells , e.g. 7, 19 or 31 cells SDD 19 x 5 mm² XTRA on XEUS eXTP meeting, Shanghai 30 March – 1 April 2016 N. Meidinger, MPE

Recommend


More recommend