numerical approximation of the integral fractional
play

Numerical Approximation of the Integral Fractional Laplacian Wenyu - PowerPoint PPT Presentation

Numerical Approximation of the Integral Fractional Laplacian Wenyu Lei Department of Mathematics Texas A&M University Joint work with Andrea Bonito and Joseph Pasciak July 26, 2018 deal.II Workshop SISSA Introduction Algorithm


  1. Numerical Approximation of the Integral Fractional Laplacian Wenyu Lei Department of Mathematics Texas A&M University Joint work with Andrea Bonito and Joseph Pasciak July 26, 2018 • deal.II Workshop • SISSA

  2. Introduction Algorithm Implementation Results Application Conclusion Outline Introduction Numerical Algorithm Implementation in deal.II Results Application: an obstacle problem for a class of integro-differential operators Conclusion Approximation of fractional Laplaican Wenyu Lei

  3. Introduction Algorithm Implementation Results Application Conclusion Outline Introduction Numerical Algorithm Implementation in deal.II Results Application: an obstacle problem for a class of integro-differential operators Conclusion Approximation of fractional Laplaican Wenyu Lei

  4. Introduction Algorithm Implementation Results Application Conclusion Integral Fractional Laplacian ( − ∆) s • Let s ∈ (0 , 1) and η : R d → R be in the Schwarz class. • Definition via integral representation: � η ( x ) − η ( y ) (( − ∆) s η )( x ) = c d,s P.V. | x − y | d +2 s dy, R d where P.V. stands for the principle value and c d,s is a normalization constant. • An equivalent definition via Fourier transform is given by F (( − ∆) s η )( ζ ) = | ζ | 2 s F ( η )( ζ ) . ( ∗ ) Here F is the Fourier transform. • ( ∗ ) defines the unbounded operator ( − ∆) s on L 2 ( R d ) with domain of definition D (( − ∆) s ) := { f ∈ L 2 ( R d ) : | ζ | 2 s F ( f ) ∈ L 2 ( R d ) } ⊂ H s ( R d ) . • Applications: s -stable L´ evy process, electroconvection and the surface quasigeostrophic models [I. Held et al., 1995]. Approximation of fractional Laplaican Wenyu Lei

  5. Introduction Algorithm Implementation Results Application Conclusion Boundary Value Problem • Ω : open, bounded domain in R d with Lipschitz boundary; • f ∈ L 2 (Ω) ; • We consider the stationary problem ( − ∆) s � u | Ω = f, in Ω . Here � u means zero extension of u . • It is a nonlocal problem. • The test space: H s (Ω) := { f ∈ L 2 (Ω) : � � � f � H s ( R d ) < ∞} . • For any η, θ ∈ � H s (Ω) , define the bilinear form � a ( η, θ ) := (( − ∆) s/ 2 � η, ( − ∆) s/ 2 � R d | ζ | 2 s F ( � η ) F ( � θ ) L 2 ( R d ) = θ ) dζ. • Therefore, the weak formulation is: find u ∈ � H s (Ω) satisfying � for all v ∈ � H s (Ω) . a ( u, v ) = fv dx, Ω Approximation of fractional Laplaican Wenyu Lei

  6. Introduction Algorithm Implementation Results Application Conclusion Finite Element Approximations of the Boundary Value Problem Finite element approaches: [Acosta & Borthagaray, 2017]: Directly approximate each entry in the stiffness matrix using the integral form � � a ( u, φ ) = c d,s 1 u ( x ) − � u ( x ) − ( � R d ( � φ ( y ))( � φ ( y )) | x − y | d +2 s dy dx 2 R d together with a certain mesh setting and special quadrature formulas (boundary element approach). [D’ Elia & Gunzburger, 2013]: Approximate the above integral in a bounded truncated domain. Approximate the bilinear form based on its Dunford-Taylor integral representation. Approximation of fractional Laplaican Wenyu Lei

  7. Introduction Algorithm Implementation Results Application Conclusion A Dunford-Taylor Integral Representation of a ( · , · ) An equivalent representation � ∞ � � � � a ( η, θ ) = 2 sin( πs ) t 1 − 2 s ( − ∆)( I − t 2 ∆) − 1 � η θ dx dt =: I π R d 0 Proof • Parseval’s Theorem: � � | ζ | 2 � � � ( − ∆)( I − t 2 ∆) − 1 � η )( ζ ) F ( � η θ dx = 1 + t 2 | ζ | 2 F ( � θ )( ζ ) dζ. R d R d • Apply the Fubini’s Theorem and use the change of variable y = t | ζ | : � � ∞ t 1 − 2 s | ζ | 2 − 2 s I = 2 sin( πs ) R d | ζ | 2 s F ( η )( ζ ) F ( θ )( ζ ) 1 + t 2 | ζ | 2 dt dζ π 0 � R d | ζ | 2 s F ( η )( ζ ) F ( θ )( ζ ) dζ. = Note that �� ∞ � − 1 y 1 − 2 s = 2 sin( πs ) c s := 1 + y 2 dy . π 0 Approximation of fractional Laplaican Wenyu Lei

  8. Introduction Algorithm Implementation Results Application Conclusion Game Plan � ∞ � � � t − 1 − 2 s ( − t 2 ∆)( I − t 2 ∆) − 1 � for η, θ ∈ � H s (Ω) . a ( η, θ ) = c s η θ dx dt � �� � 0 Ω w ( t ) η − ( I − t 2 ∆) − 1 � Here w ( t ) = � η := � η + v ( t ) with v ( t ) satisfying � � � R d v ( t ) φ dx + t 2 for all φ ∈ H 1 ( R d ) , R d ∇ v ( t ) · ∇ φ dx = − ηφ dx, Ω • Discretize the outer integral with a quadrature spacing k : � � a k ( η, θ ) = Ck t − 1 − 2 s w ( t j ) θ dx. j Ω j • Approximate w ( t ) or ( v ( t ) ) in a bounded domain B M ( t ) : � � t − 1 − 2 s a k,M ( η, θ ) = Ck w M ( t j ) θ dx. j Ω j • Approximate w M ( t ) (or v M ( t ) ) using the finite element method: � � a k,M t − 1 − 2 s w M ( η h , θ h ) = Ck h ( t j ) θ h dx. j h Ω j Approximation of fractional Laplaican Wenyu Lei

  9. Introduction Algorithm Implementation Results Application Conclusion Outline Introduction Numerical Algorithm Implementation in deal.II Results Application: an obstacle problem for a class of integro-differential operators Conclusion Approximation of fractional Laplaican Wenyu Lei

  10. Introduction Algorithm Implementation Results Application Conclusion Sinc Quadrature • Use the change of variable t = e − y/ 2 ; � ∞ � a ( η, θ ) = c s e sy w ( t ( y )) θ dx dy. 2 −∞ Ω • Use a truncated equally spaced quadrature: let k > 0 and N + and N − are positive integers chosen to be on the order of 1 /k 2 . Define � N + � a k ( η, θ ) := c s k e sy j w ( y j ) θ dx. 2 Ω j = − N − with y j = jk . • Consistency Error: | a ( η, θ ) − a k ( η, θ ) | ≤ Ce − c/k � η � � H δ (Ω) � θ � � H s (Ω) . Here δ ∈ ( s, 2 − s ] . Approximation of fractional Laplaican Wenyu Lei

  11. Introduction Algorithm Implementation Results Application Conclusion Domain Truncation η + v ( t ) where v ( t ) = − ( I − t 2 ∆) − 1 � • w ( t ) = � η . • Let B be a ball enclosing Ω and assume that diam B = 1 , then for a truncation parameter M , we define the dilated domains � { y = (1 + t (1 + M )) x : x ∈ B } , t ≥ 1 B M ( t ) := { y = (2 + M ) x : x ∈ B } , t < 1 . • Truncated solution: w M ( t ) = � η + v M ( t ) and � � � v M ( t ) φ dx + t 2 ∇ v M ( t ) ·∇ φ dx = − for all φ ∈ H 1 0 ( B M ( t )) , ηφ dx, B M ( t ) B M ( t ) Ω • Truncated bilinear form: � N + � a k,M ( η, θ ) := c s k e sy j w M ( y j ) θ dx. 2 Ω j = − N − • Consistency Error: | a k ( η, θ ) − a k,M ( η, θ ) | ≤ Ce − cM � η � L 2 (Ω) � θ � L 2 (Ω) , H s (Ω) . for all η, θ ∈ � Approximation of fractional Laplaican Wenyu Lei

  12. Introduction Algorithm Implementation Results Application Conclusion Two Finite Element Spaces • The red part is the grid of the original domain and it is quasi-uniform. • The red+black part is the grid of the truncated domain. The black part may not be quasi-uniform for implementation. But we assume the quasi-uniformity for numerical analysis. • V h (Ω) ⊂ V h ( B M ( t )) := V M h ( t ) . Approximation of fractional Laplaican Wenyu Lei

  13. Introduction Algorithm Implementation Results Application Conclusion Finite Element Approximation • The discrete solution: w M η + v M h ( t ) and for all φ h ∈ V M ( t ) , h ( t ) = � � � � v M h ( t ) φ h dx + t 2 ∇ v M h ( t ) · ∇ φ h dx = − η h φ h dx. B M ( t ) B M ( t ) Ω • The discrete bilinear form: for η h , θ h ∈ V h (Ω) � N + � ( η h , θ h ) := c s k a k,M e sy j w M h ( y j ) θ h dx. h 2 Ω j = − N − • Consistency Error: let β ∈ ( s, 3 / 2) , | a k,M ( η h , θ h ) − a k,M ( η h , θ h ) | ≤ C (1 + ln( h − 1 )) h β − s � η h � � H β (Ω) � θ h � � H s (Ω) h Approximation of fractional Laplaican Wenyu Lei

  14. Introduction Algorithm Implementation Results Application Conclusion Discrete Problem • The discrete problem: find u h ∈ V h (Ω) satisfying � a k,M ( u h , v h ) = fv h dx for all v h ∈ V h (Ω) . h Ω • V h (Ω) -ellipticity: For a fixed h , choose k small enough so that Ce − c/k h s − δ < 1 / 2 . Then, a k,M ( η h , η h ) > 1 / 2 � η h � 2 H s (Ω) . h � Assume u ∈ � H β (Ω) with β ∈ ( s, 3 / 2) and α = min( s, 1 / 2) . Error estimates Strang’s Lemma: H s (Ω) ≤ C ( e − c/k + e − cM + (1 + ln ( h − 1 )) h β − s ) � u � � � u − u h � � H β (Ω) . Duality argument: if the domain is smooth, � u − u h � L 2 (Ω) ≤ C ln( h − 1 )( e − c/k + e − cM + (1 + ln ( h − 1 )) h β − s + α ) � u � � H β (Ω) . Approximation of fractional Laplaican Wenyu Lei

  15. Introduction Algorithm Implementation Results Application Conclusion Outline Introduction Numerical Algorithm Implementation in deal.II Results Application: an obstacle problem for a class of integro-differential operators Conclusion Approximation of fractional Laplaican Wenyu Lei

Recommend


More recommend