Convex Optimization — Boyd & Vandenberghe 6. Approximation and fitting • norm approximation • least-norm problems • regularized approximation • robust approximation 6–1
Norm approximation minimize � Ax − b � ( A ∈ R m × n with m ≥ n , � · � is a norm on R m ) interpretations of solution x ⋆ = argmin x � Ax − b � : • geometric : Ax ⋆ is point in R ( A ) closest to b • estimation : linear measurement model y = Ax + v y are measurements, x is unknown, v is measurement error given y = b , best guess of x is x ⋆ • optimal design : x are design variables (input), Ax is result (output) x ⋆ is design that best approximates desired result b Approximation and fitting 6–2
examples • least-squares approximation ( � · � 2 ): solution satisfies normal equations A T Ax = A T b ( x ⋆ = ( A T A ) − 1 A T b if rank A = n ) • Chebyshev approximation ( � · � ∞ ): can be solved as an LP minimize t subject to − t 1 � Ax − b � t 1 • sum of absolute residuals approximation ( � · � 1 ): can be solved as an LP 1 T y minimize subject to − y � Ax − b � y Approximation and fitting 6–3
Penalty function approximation minimize φ ( r 1 ) + · · · + φ ( r m ) subject to r = Ax − b ( A ∈ R m × n , φ : R → R is a convex penalty function) examples 2 • quadratic: φ ( u ) = u 2 log barrier quadratic 1 . 5 • deadzone-linear with width a : φ ( u ) 1 deadzone-linear φ ( u ) = max { 0 , | u | − a } 0 . 5 • log-barrier with limit a : 0 − 1 . 5 − 1 − 0 . 5 0 0 . 5 1 1 . 5 u − a 2 log(1 − ( u/a ) 2 ) � | u | < a φ ( u ) = ∞ otherwise Approximation and fitting 6–4
example ( m = 100 , n = 30 ): histogram of residuals for penalties φ ( u ) = u 2 , φ ( u ) = − log(1 − u 2 ) φ ( u ) = | u | , φ ( u ) = max { 0 , | u |− a } , 40 p = 1 0 − 2 − 1 0 1 2 10 p = 2 0 − 2 − 1 0 1 2 Deadzone 20 0 − 2 − 1 0 1 2 Log barrier 10 0 − 2 − 1 0 1 2 r shape of penalty function has large effect on distribution of residuals Approximation and fitting 6–5
Huber penalty function (with parameter M ) u 2 � | u | ≤ M φ hub ( u ) = M (2 | u | − M ) | u | > M linear growth for large u makes approximation less sensitive to outliers 2 20 1 . 5 10 φ hub ( u ) f ( t ) 1 0 0 . 5 − 10 − 20 0 − 1 . 5 − 1 − 0 . 5 0 0 . 5 1 1 . 5 − 10 − 5 0 5 10 u t • left: Huber penalty for M = 1 • right: affine function f ( t ) = α + βt fitted to 42 points t i , y i (circles) using quadratic (dashed) and Huber (solid) penalty Approximation and fitting 6–6
Least-norm problems minimize � x � subject to Ax = b ( A ∈ R m × n with m ≤ n , � · � is a norm on R n ) interpretations of solution x ⋆ = argmin Ax = b � x � : • geometric: x ⋆ is point in affine set { x | Ax = b } with minimum distance to 0 • estimation: b = Ax are (perfect) measurements of x ; x ⋆ is smallest (’most plausible’) estimate consistent with measurements • design: x are design variables (inputs); b are required results (outputs) x ⋆ is smallest (’most efficient’) design that satisfies requirements Approximation and fitting 6–7
examples • least-squares solution of linear equations ( � · � 2 ): can be solved via optimality conditions 2 x + A T ν = 0 , Ax = b • minimum sum of absolute values ( � · � 1 ): can be solved as an LP 1 T y minimize subject to − y � x � y, Ax = b tends to produce sparse solution x ⋆ extension: least-penalty problem minimize φ ( x 1 ) + · · · + φ ( x n ) subject to Ax = b φ : R → R is convex penalty function Approximation and fitting 6–8
Regularized approximation minimize (w.r.t. R 2 + ) ( � Ax − b � , � x � ) A ∈ R m × n , norms on R m and R n can be different interpretation: find good approximation Ax ≈ b with small x • estimation: linear measurement model y = Ax + v , with prior knowledge that � x � is small • optimal design : small x is cheaper or more efficient, or the linear model y = Ax is only valid for small x • robust approximation: good approximation Ax ≈ b with small x is less sensitive to errors in A than good approximation with large x Approximation and fitting 6–9
Scalarized problem minimize � Ax − b � + γ � x � • solution for γ > 0 traces out optimal trade-off curve • other common method: minimize � Ax − b � 2 + δ � x � 2 with δ > 0 Tikhonov regularization � Ax − b � 2 2 + δ � x � 2 minimize 2 can be solved as a least-squares problem 2 � �� � A � � b √ � � minimize x − � � 0 δI � � 2 solution x ⋆ = ( A T A + δI ) − 1 A T b Approximation and fitting 6–10
Optimal input design linear dynamical system with impulse response h : t � y ( t ) = h ( τ ) u ( t − τ ) , t = 0 , 1 , . . . , N τ =0 input design problem: multicriterion problem with 3 objectives 1. tracking error with desired output y des : J track = � N t =0 ( y ( t ) − y des ( t )) 2 2. input magnitude: J mag = � N t =0 u ( t ) 2 3. input variation: J der = � N − 1 t =0 ( u ( t + 1) − u ( t )) 2 track desired output using a small and slowly varying input signal regularized least-squares formulation minimize J track + δJ der + ηJ mag for fixed δ, η , a least-squares problem in u (0) , . . . , u ( N ) Approximation and fitting 6–11
example : 3 solutions on optimal trade-off surface (top) δ = 0 , small η ; (middle) δ = 0 , larger η ; (bottom) large δ 5 1 0 . 5 0 u ( t ) y ( t ) 0 − 5 − 0 . 5 − 1 − 10 0 50 100 150 200 0 50 100 150 200 t t 4 1 2 0 . 5 y ( t ) u ( t ) 0 0 − 0 . 5 − 2 − 1 − 4 0 50 100 150 200 0 50 100 150 200 t t 4 1 2 0 . 5 u ( t ) y ( t ) 0 0 − 0 . 5 − 2 − 1 − 4 0 50 100 150 200 0 50 100 150 200 t t Approximation and fitting 6–12
Signal reconstruction minimize (w.r.t. R 2 + ) ( � ˆ x − x cor � 2 , φ (ˆ x )) • x ∈ R n is unknown signal • x cor = x + v is (known) corrupted version of x , with additive noise v • variable ˆ x (reconstructed signal) is estimate of x • φ : R n → R is regularization function or smoothing objective examples: quadratic smoothing, total variation smoothing: n − 1 n − 1 � � x i ) 2 , φ quad (ˆ x ) = (ˆ x i +1 − ˆ φ tv (ˆ x ) = | ˆ x i +1 − ˆ x i | i =1 i =1 Approximation and fitting 6–13
quadratic smoothing example 0 . 5 0 . 5 x ˆ 0 − 0 . 5 x 0 0 1000 2000 3000 4000 0 . 5 − 0 . 5 0 1000 2000 3000 4000 ˆ x 0 − 0 . 5 0 . 5 0 1000 2000 3000 4000 0 . 5 x cor 0 x ˆ 0 − 0 . 5 − 0 . 5 0 1000 2000 3000 4000 0 1000 2000 3000 4000 i i three solutions on trade-off curve original signal x and noisy signal x cor � ˆ x − x cor � 2 versus φ quad (ˆ x ) Approximation and fitting 6–14
total variation reconstruction example 2 x i 0 ˆ 2 1 − 2 0 500 1000 1500 2000 x 0 2 − 1 x i 0 ˆ − 2 0 500 1000 1500 2000 − 2 2 0 500 1000 1500 2000 2 1 x cor 0 x i 0 ˆ − 1 − 2 − 2 0 500 1000 1500 2000 0 500 1000 1500 2000 i i three solutions on trade-off curve original signal x and noisy � ˆ x − x cor � 2 versus φ quad (ˆ x ) signal x cor quadratic smoothing smooths out noise and sharp transitions in signal Approximation and fitting 6–15
2 x ˆ 0 2 1 − 2 0 500 1000 1500 2000 x 0 2 − 1 x ˆ 0 − 2 0 500 1000 1500 2000 − 2 2 0 500 1000 1500 2000 2 1 x cor 0 ˆ x 0 − 1 − 2 − 2 0 500 1000 1500 2000 0 500 1000 1500 2000 i i three solutions on trade-off curve original signal x and noisy � ˆ x − x cor � 2 versus φ tv (ˆ x ) signal x cor total variation smoothing preserves sharp transitions in signal Approximation and fitting 6–16
Robust approximation minimize � Ax − b � with uncertain A two approaches: • stochastic : assume A is random, minimize E � Ax − b � • worst-case: set A of possible values of A , minimize sup A ∈A � Ax − b � tractable only in special cases (certain norms � · � , distributions, sets A ) 12 example : A ( u ) = A 0 + uA 1 10 x nom • x nom minimizes � A 0 x − b � 2 2 8 • x stoch minimizes E � A ( u ) x − b � 2 r ( u ) x stoch 2 6 with u uniform on [ − 1 , 1] x wc 4 • x wc minimizes sup − 1 ≤ u ≤ 1 � A ( u ) x − b � 2 2 2 figure shows r ( u ) = � A ( u ) x − b � 2 0 − 2 − 1 0 1 2 u Approximation and fitting 6–17
stochastic robust LS with A = ¯ A + U , U random, E U = 0 , E U T U = P E � ( ¯ A + U ) x − b � 2 minimize 2 • explicit expression for objective: E � ¯ E � Ax − b � 2 Ax − b + Ux � 2 = 2 2 � ¯ Ax − b � 2 2 + E x T U T Ux = � ¯ Ax − b � 2 2 + x T Px = • hence, robust LS problem is equivalent to LS problem � ¯ Ax − b � 2 2 + � P 1 / 2 x � 2 minimize 2 • for P = δI , get Tikhonov regularized problem � ¯ Ax − b � 2 2 + δ � x � 2 minimize 2 Approximation and fitting 6–18
Recommend
More recommend