fundamental solutions for fractional differential
play

FUNDAMENTAL SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS - PowerPoint PPT Presentation

FUNDAMENTAL SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING FRACTIONAL POWERS OF FINITE DIFFERENCES OPERATORS J. G onzalez-Camus (USACH) and P.J. Miana (UZ) Workshop on Banach spaces and Banach lattices ICMAT, September 2019,


  1. FUNDAMENTAL SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING FRACTIONAL POWERS OF FINITE DIFFERENCES OPERATORS J. G´ onzalez-Camus (USACH) and P.J. Miana (UZ) Workshop on Banach spaces and Banach lattices ICMAT, September 2019, 9th-13th pjmiana@unizar.es

  2. 1. Introduction We present the solution of fractional differential equation � D β t u ( n , t ) = Bu ( n , t ) + g ( n , t ) , n ∈ Z , t > 0 . (1) u ( n , 0) = ϕ ( n ) , u t ( n , 0) = φ ( n ) n ∈ Z ,

  3. 1. Introduction We present the solution of fractional differential equation � D β t u ( n , t ) = Bu ( n , t ) + g ( n , t ) , n ∈ Z , t > 0 . (1) u ( n , 0) = ϕ ( n ) , u t ( n , 0) = φ ( n ) n ∈ Z , Bf ( n ) = ( K ∗ f )( n ), with K ∈ l ∞ ( Z ), f ∈ l p ( Z ), p ∈ [1 , ∞ ] and β ∈ (1 , 2]. We recall that D β t denotes the Caputo fractional derivative given by � t 1 D β ( t − s ) 1 − β v ′′ ( s ) ds = ( g 2 − β ∗ v ′′ )( t ) , t v ( t ) = Γ(2 − β ) 0

  4. 1. Introduction We present the solution of fractional differential equation � D β t u ( n , t ) = Bu ( n , t ) + g ( n , t ) , n ∈ Z , t > 0 . (1) u ( n , 0) = ϕ ( n ) , u t ( n , 0) = φ ( n ) n ∈ Z , Bf ( n ) = ( K ∗ f )( n ), with K ∈ l ∞ ( Z ), f ∈ l p ( Z ), p ∈ [1 , ∞ ] and β ∈ (1 , 2]. We recall that D β t denotes the Caputo fractional derivative given by � t 1 D β ( t − s ) 1 − β v ′′ ( s ) ds = ( g 2 − β ∗ v ′′ )( t ) , t v ( t ) = Γ(2 − β ) 0 g α ( t ) := t α − 1 Γ( α ), for α > 0.

  5. 1. Introduction For 1 ≤ p ≤ ∞ , the Banach space ( ℓ p ( Z ) , � � p ) are formed by f = ( f ( n )) n ∈ Z ⊂ C such that � 1 ∞ � p � | f ( n ) | p � f � p : = < ∞ , 1 ≤ p < ∞ ; n = −∞ � f � ∞ : = sup | f ( n ) | < ∞ . n ∈ Z → ℓ ∞ ( Z ), ( ℓ p ( Z )) ′ = ℓ p ′ ( Z ) with 1 ℓ 1 ( Z ) ֒ → ℓ p ( Z ) ֒ p + 1 p ′ = 1 for 1 < p < ∞ and p = 1 and p ′ = ∞ . In the case that f ∈ ℓ 1 ( Z ) and g ∈ ℓ p ( Z ), then f ∗ g ∈ ℓ p ( Z ) where ∞ � ( f ∗ g )( n ) := f ( n − j ) g ( j ) , n ∈ Z , j = −∞ and � f ∗ g � p ≤ � f � 1 � g � p for 1 ≤ p ≤ ∞ . Note that ( ℓ 1 ( Z ) , ∗ ) is a commutative Banach algebra with unit (we write δ 0 = χ { 0 } ).

  6. 1. Introduction We apply G¨ uelfand theory to get f ∈ ℓ 1 ( Z ) , σ ℓ 1 ( Z ) ( f ) = F ( f )( T ) , where � f ( n ) e in θ , F ( f )( θ ) := θ ∈ T . n ∈ Z

  7. 1. Introduction We apply G¨ uelfand theory to get f ∈ ℓ 1 ( Z ) , σ ℓ 1 ( Z ) ( f ) = F ( f )( T ) , where � f ( n ) e in θ , F ( f )( θ ) := θ ∈ T . n ∈ Z Given a = ( a ( n )) n ∈ Z ∈ ℓ 1 ( Z ), define A ∈ B ( ℓ p ( Z )) by convolution, b ∈ ℓ p ( Z ) , A ( b )( n ) := ( a ∗ b )( n ) , n ∈ Z , for all 1 ≤ p ≤ ∞ , � A � = � a � 1 and σ B ( ℓ p ( Z )) ( A ) = σ ℓ 1 ( Z ) ( a ) = F ( a )( T ) (2) for all 1 ≤ p ≤ ∞ , (Wiener’s Lemma).

  8. Aims of the talk

  9. Aims of the talk The main aim of this talk is to study the fractional differential equations in ℓ p ( Z ) for 1 ≤ p ≤ ∞ . To do this. (i) We apply G¨ uelfand theory to describe convolution operators. (ii) We calculate the kernel of the convolution fractional powers. (iii) We solve some fractional evolution equation in ℓ p ( Z ). (iv) Finally we obtain explict solutions for fractional evolution equation for some fractional powers of finite difference operators.

  10. 2. Finite difference operators on ℓ 1 ( Z ) Finite difference operators A ∈ B ( ℓ p ( Z )) given by m � Af ( n ) := a ( j ) f ( n − j ) , a j ∈ C , j = − m for some m ∈ N , i.e. a = ( a ( n ) n ∈ Z ) ∈ c c ( Z ) are convolution operator and the discrete Fourier Transform of a is a trigonometric polynomial m � a ( j ) e ij θ . F ( a )( θ ) = j = − m

  11. 2. Finite difference operators on ℓ 1 ( Z ) 1. D + f ( n ) := f ( n ) − f ( n + 1) = (( δ 0 − δ − 1 ) ∗ f )( n ); 2. D − f ( n ) := f ( n ) − f ( n − 1) = (( δ 0 − δ 1 ) ∗ f )( n ); 3. ∆ d f ( n ) := f ( n +1) − 2 f ( n )+ f ( n − 1) = (( δ − 1 − 2 δ 0 + δ 1 ) ∗ f )( n ); 4. D f ( n ) := f ( n + 1) − f ( n − 1) = (( δ − 1 − δ 1 ) ∗ f )( n ); 5. ∆ ++ f ( n ) := f ( n + 2) − 2 f ( n + 1) + f ( n ) = (( δ − 2 − 2 δ − 1 + δ 0 ) ∗ f )( n ); 6. ∆ −− f ( n ) := f ( n ) − 2 f ( n − 1)+ f ( n − 2) = (( δ 0 − 2 δ 1 + δ 2 ) ∗ f )( n ); 7. ∆ dd f ( n ) := f ( n + 2) − 2 f ( n ) + f ( n − 2) = (( δ − 2 − 2 δ 0 + δ 2 ) ∗ f )( n ); for n ∈ Z , [Bateman, 1943].

  12. 2. Finite difference operators on ℓ 1 ( Z ) Proposition The following equalities hold: (i) ∆ d = − ( D + + D − ) = − D + D − , D = − ( D + − D − ) = ( − D + + 2 I ) D − = ( D − − 2 I ) D + , (∆ ++ − 2∆ d + ∆ −− ) = D 2 f . ∆ dd = (ii) ( D + ) ′ = D − ; ( D − ) ′ = D + ; (∆ d ) ′ = ∆ d ; ( D ) ′ = D ; (∆ dd ) ′ = ∆ dd .

  13. 2. Finite difference operators on ℓ 1 ( Z ) Spectrum sets of finite difference operators Imaginary axis 2 D + , D - 1 Δ d , Δ dd  Real axis - 4 - 2 2 4 Δ ++ , Δ -- - 1 - 2

  14. 2. Finite difference operators on ℓ 1 ( Z ) ∞ z n a ∗ n e za := � z ∈ C . , n ! n =0 ∞ z 2 n a ∗ 2 n � cosh( za ) := (2 n )! , z ∈ C . n =0

  15. 2. Finite difference operators on ℓ 1 ( Z ) ∞ z n a ∗ n e za := � z ∈ C . , n ! n =0 ∞ z 2 n a ∗ 2 n � cosh( za ) := (2 n )! , z ∈ C . n =0 Proposition Let A ∈ B ( l p ( Z )) , with Af = a ∗ f , f ∈ ℓ p ( Z ) and a ∈ ℓ ∞ ( Z ) . Then, the Fourier transform of the semigroup { e at } t ≥ 0 generated by a is given by F ( e at )( θ ) = e F ( a )( θ ) t . F ( cosh ( at ))( θ ) = cosh ( F ( a )( θ ) t ) .

  16. 2. Finite difference operators on ℓ 1 ( Z ) Operator F ( · )( z ) Associated semigroup e − z z n − D + z − 1 n ! χ N 0 ( n ) =: g z , + ( n ) e − z z − n 1 − D − z − 1 ( − n )! χ − N 0 ( n ) =: g z , − ( n ) z + 1 e − 2 z I n (2 z ) ∆ d z − 2 z − 1 D J n (2 z ) z 1 −D z − z J − n (2 z ) e z z n − D + + 2 z + 1 n ! χ N 0 ( n ) e z z n 1 − D − + 2 z + 1 n ! χ − N 0 ( n ) √ e z ( i 2 z ) − n H − n (2 iz ) z 2 − 2 z + 1 ∆ ++ χ N 0 ( n ) =: h z , + ( n ) ( − n )! √ e z ( i 2 z ) n H n (2 iz ) z 2 − 2 1 1 ∆ −− z + 1 χ − N 0 ( n ) =: h z , − ( n ) n ! z 2 − 2 + 1 e − 2 z I n (2 z ) χ 2 Z ( n ) ∆ dd z 2

  17. 2. Finite difference operators on ℓ 1 ( Z ) Theorem (i) The Bessel function J n has a factorization expression given by J n (2 z ) = ( g − z , + ∗ g z , − )( n ) , n ∈ Z , z ∈ C . (ii) The Bessel function I n admits factorization product given by e − 2 z I n (2 z ) = ( g z , + ∗ g z , − )( n ) , I n (2 z ) = ( j z , + ∗ j z , − )( n ) . (iii) The Bessel function e − 2 z I n (2 z ) χ 2 Z ( n ) admits a factorization given by I n (2 z ) χ 2 Z ( n ) = h z , + ( n ) ∗ I n (2 z ) ∗ e − 2 z I n (2 z ) ∗ h z , − ( n ) .

  18. 3. Fractional powers of discrete operators

  19. 3. Fractional powers of discrete operators The Generalized Binomial Theorem is given by ∞ � α � ( a + b ) α = � a α − j b j , α ∈ C . j j =0

  20. 3. Fractional powers of discrete operators The Generalized Binomial Theorem is given by ∞ � α � ( a + b ) α = � a α − j b j , α ∈ C . j j =0 � α � 1 For α > 0, ∼ j α +1 and � a � ≤ 1 j ∞ � α � ( δ 0 + a ) α = � a j , α > 0 . j j =0

  21. 3. Fractional powers of discrete operators For 0 < α < 1, the Balakrishnan’s formula is expressed by � ∞ 1 ( T ( t ) x − x ) dt ( − A ) α x = t 1+ α , x ∈ D ( A ) . Γ( − α ) 0

  22. 3. Fractional powers of discrete operators For 0 < α < 1, the Balakrishnan’s formula is expressed by � ∞ 1 ( T ( t ) x − x ) dt ( − A ) α x = t 1+ α , x ∈ D ( A ) . Γ( − α ) 0 Theorem Let 0 < α < 1 , and A ∈ B ( ℓ p ( Z )) , 1 ≤ p ≤ ∞ a generator of a uniformly bounded semigroup, with Af = a ∗ f , f ∈ ℓ p ( Z ) and a ∈ ℓ 1 ( Z ) . Then the fractional powers ( − A ) α is well-posedness and it is expressed by ( − A ) α f = ( − a ) α ∗ f , where � 2 π ( − a ) α ( n ) := 1 ( −F ( a )( θ )) α e − in θ d θ. 2 π 0

  23. 3. Fractional powers of discrete operators � − α − 1+ m = ( − 1) m � α Λ α ( m ) := � � , for m ∈ N 0 . m m Fractional power Kernel Explicit expression D α K α Λ α ( n ) χ N 0 + + D α K α Λ α ( n ) χ − N 0 − − ( − 1) n Γ(2 α +1) ( − ∆ d ) α K α d Γ(1+ α + n )Γ(1+ α − n ) i n Γ( α +1) D α K α D + 2 + n 2 − n 2 Γ( α 2 +1)Γ( α 2 +1) ( − i ) n Γ( α +1) ( −D ) α K α 2 + n 2 − n D − 2 Γ( α 2 +1)Γ( α 2 +1) ( − D + + 2 I ) α K α ( − 1) m Λ α ( n ) χ N 0 ( − D + +2 I ) ( − D − + 2 I ) α K α ( − 1) m Λ α ( n ) χ − N 0 ( − D − +2 I ) Λ 2 α ( n ) χ N 0 ∆ α K α ++ D ++ ∆ α K α Λ 2 α ( n ) χ − N 0 −− D −− ( − i ) n Γ(2 α +1) ( − ∆ dd ) α K α Γ( α + n 2 +1)Γ( α − n dd 2 2 +1)

  24. 3. Fractional powers of discrete operators

Recommend


More recommend