numerical analysis of coupled circuit and device models
play

Numerical Analysis of Coupled Circuit and Device Models Caren - PowerPoint PPT Presentation

Numerical Analysis of Coupled Circuit and Device Models Caren Tischendorf Humboldt University of Berlin ETH Z urich, MACSI-NET Workshop, 2.-3. May 2003 Overview 1. motivation 2. network modeling 3. device modeling 4. coupling of both


  1. Numerical Analysis of Coupled Circuit and Device Models Caren Tischendorf Humboldt University of Berlin ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003

  2. Overview 1. motivation 2. network modeling 3. device modeling 4. coupling of both systems 5. formulation as abstract differential-algebraic system 6. index f¨ ur abstract DAEs 7. Galerkin approach for abstract DAEs ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 1

  3. Circuit Modeling • Kirchhoff’s current law (KCL): Ai = 0 • Kirchhoff’s voltage law (KVL): A T e = u • circuit elements: g ( d q ( u,t ) , d φ ( i,t ) , u, i, t ) = 0 , e.g.: d t d t i = d q C ( u,t ) – capacitors: i = C d u d t , d t u = d φ L ( i,t ) – inductors: u = L d i d t , d t – voltage sources: u = v ( t ) , u = v ( i, ˆ u, t ) � i f ( d q ( x,t ) � ⇒ differential-algebraic equation (DAE) , x, t ) = 0 with x = e d t u ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 2

  4. Replacement Circuit Models for More Complex Elements Gate Source SiO Drain 2 − − Device- n n − → Simulation p Si Bulk Advantages: • resulting system is a differential-algebraic system • fast simulation of the circuit is possible • circuits with many transistors ( > 10 6 ) can be simulated ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 3

  5. Replacement Circuit Models for More Complex Elements Gate Source SiO Drain 2 − − Device- n n − → Simulation p Si Bulk Disadvantages: • interaction between circuit element and surrounding circuit might be insuffi- ciently regarded (essential for high frequency circuits) • more detailed models need a multitude of parameters ( > 500 per transistor) ⇒ parameter extraction is very time consuming ⇒ parameter adjustment becomes problematic for optimal circuit design ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 4

  6. Wish: Coupling of Circuit and Device Simulation Gate Source SiO Drain 2 − − n n p + Si Bulk PDE DAE ⇒ PDAE ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 5

  7. Network Equations by Modified Nodal Analysis d q ( A T C e, t ) + A R g ( A T R e, t ) + A L j L + A V j V + A S j S = − A I i s A C d t d φ ( j L , t ) − A T L e = 0 d t A T = V e v s A = ( A C , A R , A L , A V , A I , A S ) • e - nodal potentials • j L , j V - currents of inductances and voltage sources • j S - currents of semiconductors ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 6

  8. Index of Network DAEs • DAE index is always ≤ 2 . [G¨ unther/Feldmann 96, T. 97, Reissig 98, Est´ evez Schwarz/T. 00] ( A C , A R , A V ) has not full row rank and Q T • DAE-Index = 2 ⇔ C A V has not full column rank ( Q C projector onto ker A T C ). ⇔ The network has an LI-cutset or a CV-loop with at least one VS. CV-loop LI-cutset ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 7

  9. Problems of the Simulation of DAEs with Higher Index • Solution does not depend continuously on the initial data. • Initial values have to fulfill (hidden) constraints. • Simulation methods like BDF and trapezoidal rule can collapse. Example: Integration with inconsistent initial value 5 j exact Trapez V 4 3 2 2sin(t) 1 j V 0 −1 i(j ,t) −2 V −3 −4 −5 0 5 10 15 t ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 8

  10. Problems of the Simulation of DAEs with Higher Index • Solution does not depend continuously on the initial data. • Initial values have to fulfill (hidden) constraints. • Simulation methods like BDF and trapezoidal rule can collapse. Example: Integration with inconsistent initial value 5 j exact Trapez V 4 3 2 2sin(t) 1 j V 0 −1 i(j ,t) −2 V −3 −4 −5 0 5 10 15 t ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 9

  11. Problems of the Simulation of DAEs with Higher Index • Solution does not depend continuously on the initial data. • Initial values have to fulfill (hidden) constraints. • Simulation methods like BDF and trapezoidal rule can collapse. Example: Integration with consistent initial value 5 j exact Trapez V 4 3 2 2sin(t) 1 j V 0 −1 i(j ,t) −2 V −3 −4 −5 0 5 10 15 t ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 10

  12. Semiconductor Equations (Drift Diffusion Model) Gate div ( ε grad V ) = q ( n − p − N ) − ∂ t n + 1 Source q div J n = R ( n, p, J n , J p ) SiO Drain 2 − − n n ∂ t p + 1 q div J p = − R ( n, p, J n , J p ) p Si = q ( D n grad n − µ n n grad V ) J n = q ( − D p grad p − µ p p grad V ) J p Bulk • V - electrostatic potential • n , p - electron and hole concentration • J n , J p - current density of electrons and holes ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 11

  13. Boundary and Coupling Conditions e l + c · A T = S e + W on Γ O ∪ Γ S V αV − α ( e l + c · A T grad V · ν = S e ) + β on Γ MI grad V · ν = 0 on Γ I = = on Γ O n n 0 , p p 0 J n · ν = − qv n ( n − n 0 ) , J p · ν = qv p ( p − p 0 ) on Γ S J n · ν = − qR surf ( n, p ) , J p · ν = qR surf ( n, p ) on Γ MI J n · ν = 0 , J p · ν = 0 on Γ I � j S k = ( J n + J p − ε grad ∂ t V ) · ν d σ Γ k • Γ O , Γ S - Ohmic and Schottky contacts • Γ MI - metal-insulator contacts • Γ I - insulator contacts • Γ k - contacts at the k -th terminal of the semiconductor ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 12

  14. Homogenization Let f ( x ) = ( f 1 ( x ) , ..., f b S − 1 ( x )) T and g ( x ) be smooth functions on Ω with � 1 if x ∈ Γ k ⊆ (Γ O ∪ Γ S ∪ Γ MI ) , f k ( x ) = grad f k · ν = 0 on Γ 0 if x ∈ (Γ O ∪ Γ S ∪ Γ MI ) \ Γ k , and g = W on Γ O ∪ Γ S , grad g · ν = 0 on Γ MI ∪ Γ I . ˜ V ( x, t ) := V ( x, t ) − e l ( t ) − f ( x ) · A T S e ( t ) − g ( x ) ⇒ ˜ ε grad ˜ V · ν + α ˜ V = ˜ grad ˜ V = 0 on Γ O ∪ Γ S , β on Γ MI , V · ν = 0 on Γ I with ˜ β := β − αg − ε grad g · ν . ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 13

  15. Complete Coupled System d q C ( A T C e, t ) + A R g ( A T R e, t ) + A L j L + A V j V + A S j S + A I i s = 0 A C d t d φ L ( j L , t ) − A T L e = 0 d t A T V e − v s = 0 div ( ε grad ˜ q ( n − p − N ) − div ( ε grad ( f · A T V ) = S e + g )) − ∂ t n + 1 q div J n = R ( n, p, J n , J p ) ∂ t p + 1 q div J p = − R ( n, p, J n , J p ) q ( D n grad n − µ n n grad ( ˜ V + f · A T = S e + g )) J n q ( − D p grad p − µ p p grad ( ˜ V + f · A T J p = S e + g )) � [( J n + J p ) · ν χ 1 − ε ∂ t grad ˜ j S = V · ν χ 2 ] d σ Γ ˜ ε grad ˜ V · ν + α ˜ V = ˜ grad ˜ V = 0 on Γ O ∪ Γ S , β on Γ MI , V · ν = 0 on Γ I + boundary conditions for n and p as well as J n and J p ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 14

  16. Coupled System as Abstract Differential-Algebraic System (I)   qC ( A T Cu 1 ,t ) A d φL ( u 2 ,t ) D ( u, t ) = with  , dt D ( u ( t ) , t ) + B ( u ( t ) , t ) = 0   − r 1 u 5  u 6 u 7 ARg ( A T   Ru 1 ,t )+ ALu 2+ AV u 3+ ASu 4+ AIis ( t ) − A T Lu 1    A T  AC 0 0 0 0 V u 1 − vs ( t )     0 I 0 0 0  div ( ε grad u 5) − q ( u 6 − u 7 − N )+div ( ε grad ( f · A T  Su 1+ g )) 0 0 0 0 0     0 0 0 0 0  − 1  A = B ( u, t ) =  , ,   q div u 8+ R ( u 6 ,u 7 ,u 8 ,u 9) 0 0 0 I 0     0 0 0 0 I   1  0 0 0 0 0  q div u 9+ R ( u 6 ,u 7 ,u 8 ,u 9)  0 0 0 0 0   0 0 I 0 0 u 8 − q ( Dn grad u 6 − µnu 7grad ( u 5+ f · A T   Su 1+ g ))   u 9 − q ( − Dp grad u 7 − µpu 7grad ( u 5+ f · A T   Su 1+ g )) u 4 − r 2 ( u 8+ u 9) � � where r 1 v := Γ ε grad v · ν χ 2 d σ, r 2 v := Γ v · ν χ 1 d σ and u ( t ) = ( e ( t ) , j L ( t ) , j V ( t ) , j S ( t ) , ˜ V ( · , t ) , n ( · , t ) , p ( · , t ) , J n ( · , t ) , J p ( · , t )) ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 15

  17. Coupled System as Abstract Differential-Algebraic System (I) A D ( · , t ) A d dt D ( u ( t ) , t ) + B ( u ( t ) , t ) = 0 B ( · , t ) 9 ns X 1 = R n − 1 , l =1 R kl − 1 X 2 = R nL , X 3 = R nV , X := X with i =1 X i X 4 = X ns l =1 H 2 (Ω l ) : v l = 0 on Γ l O ∪ Γ l S } , X 5 = { v ∈ X ns ns l =1 H 1 (Ω l ) , X 6 = X 7 = X X 8 = X 9 = l =1 H (div ; Ω l ) . X ns l =1 L 2 (Ω l )) 5 × X 4 := X 1 × X 2 × X 3 × ( X Y ns R nC × X 2 × X 4 × ( l =1 H 1 (Ω l )) 2 Z := X ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 16

  18. Coupled System as Abstract Differential-Algebraic System (I) A D ( · , t ) A d dt D ( u ( t ) , t ) + B ( u ( t ) , t ) = 0 B ( · , t ) • X , Y , Z - real Hilbert spaces • A , D ( · , t ) continuous operators • B ( · , t ) is an unbounded operator! ETH Z¨ urich, MACSI-NET Workshop, 2.-3. May 2003 C. Tischendorf 17

Recommend


More recommend