novel techniques in wind engineering
play

Novel Techniques in Wind Engineering Horia HANGAN INTRODUCTION - PowerPoint PPT Presentation

Novel Techniques in Wind Engineering Horia HANGAN INTRODUCTION Pielke Jr. (1997): minimize Vulnerability = f (Incidence, Exposure) Incidence = f (Intensity, Occurrence, Frequency) Exposure = f (Population, Property, Preparedness) SUMMARY


  1. Novel Techniques in Wind Engineering Horia HANGAN

  2. INTRODUCTION Pielke Jr. (1997): minimize Vulnerability = f (Incidence, Exposure) Incidence = f (Intensity, Occurrence, Frequency) Exposure = f (Population, Property, Preparedness)

  3. SUMMARY • New Laboratory: Novel WindEEE experiments – Non-Synoptic Winds: Tornadoes, Downbursts Climate – New Flow and Structural Analysis PDF, V g , V gr – Topography and Canopy Effects – ABL Multiscale Experiments: Wind Turbines, Solar Panels – Measurement Techniques: Particle Tracking V(z), I u (z), S(f) • New Numerical: Multiple Space and Time Scales Aerodynamics – Mesoscale: WARF, Reanalysis p(x,t) – Microscale: Urban wind environment Structural • New Full Scale: Real Space-Time Data Response – Mobile Doppler Radar x,a,M,F – LiDAR

  4. LABORATORY The Wind Engineering Energy and Environment (WindEEE) Dome • WindEEE Dome : new three dimensional and time-dependent wind chamber • can simulate various wind systems from sheared winds and gust fronts to tornadoes and downbursts • a multi-scale, multi-purpose facility for wind research www.windeee.ca

  5. WindEEE: Preliminary Design straight/sheared flow tornado flow downburst flow

  6. WindEEE: Engineering Design • 106 individually controlled fans • 2 MW maximum power • 5 m lift and turntable • 1600 floor roughness elements • 1000+ tons of steel • 1850 m³ of concrete • LEEDs Silver accreditation

  7. WindEEE: Research Ready Six Initial Design Specifications: - Straight Mode Uniform - Straight Mode Boundary Layer - Straight Mode Shear - Tornado - Downburst - Reversed Flow Mode + HH 7 

  8. WindEEE: Tornado Research M. Refan, D. Parvu, H. Hangan – ICWE14

  9. WindEEE: Tornado Research

  10. Data Analysis: Velocity Correlations Height 0.035 0.045 m 0.070 m 0.080 m 0.150 m Fan angle 10° m      u u v v  i , j i , j Correlatio n   Fan angle 20° u v Fan angle 30° R. Ashton, M. Refan, H. Hangan, G. V. Iungo

  11. Data Analysis: Independent component analysis L. Carassale, M. Refan, H. Hangan

  12. WindEEE: Tornado Research • Generic Industrial and Hospital building shapes (c) (a) (b) • Tests in BLWTL and WindEEE • Determine the loading differences (d) (e) (f) M. Refan, H. Hangan

  13. WindEEE: Downburst Research D. Parvu, A. Costache, H. Hangan – ICWE 14

  14. WindEEE: Downburst Research - Downburst TL Interaction - H/D < 1; H/D > 1 - Roughness Effects - ElDamatty, Bitsuamlak, Savory, Hangan A. ElDamatty, A. ElAwady – ICWE14

  15. Wind-Structure : Thunderstorm Response Spectrum speed (m/s) f eq time SDOF system   f ˆ    N f f S n , eq,N eq d 0 NDOF system   0.002   ˆ S f     f f n , , 2 eq,2 eq d,eq 1   0.01 f 1 Solari et al., W&S, 2015 eq,1   0.05 Solari et al., JWEIA, 2015 Solari & De Gaetano, ICWE14

  16. Wind-Structure: Gust-Front Factor ( G G-F ) Modeling and analysis of thunderstorm/downburst generated gust-front wind loads effect on structures Web-enabled module to facilitate the use of the GFF framework http://gff.ce.nd.edu 1) Kwon, D. K., and Kareem, A., "Gust-front factor: New Framework for Wind Load Effects on Structures." Journal of Structural Engineering, ASCE, 135(6), 717-732, 2009. 2) Kwon, D. K., Kareem, A. "Generalized gust-front factor: A computational framework for wind load effects." Engineering Structures, 48, 635-644, 2013.

  17. WindEEE: Solar Panels Research Full-scale: ground and roof mounted solar array at WindEEE Dome

  18. WindEEE: Solar Panels Research Pressure + force balance + strain gauge testing Z. Samani, G. Bitsuamlak, H. Hangan

  19. WINDEEE : Topography – Bolund Experiment • located near Roskilde, Denmark • 12 m high peninsula with steep escarpment • shows topographical similarity to wind turbine sites in complex terrain • provides meaningful test case for model validation • comprehensive mast data available

  20. WINDEEE : Topography – Bolund Experiment • 1/25 Scale Model • Large Scale PIV: 2 x 1.5 meters • 4 simultaneous cameras • Window overlapping • Several exposures

  21. WINDEEE : Topography – Bolund Experiment Full Scale Bolund Data WindEEE (Mean velocity, U) WindEEE Data 20 40 18 35 16 Full Scale Height (m) 30 14 Full Scale Height (m) 25 12 10 20 8 15 6 10 4 5 2 0 0 0 5 10 15 20 0 10 20 30 U (m/s), TI (%) s/u *

  22. WINDEEE : Topography – Bolund Experiment • Cameras 1 and 2 • Velocity Snapshots

  23. WINDEEE : Canopy – PEI Experiment

  24. WINDEEE : Canopy – PEI Experiment Porosity based Forest Canopy Modeling LAI (Leaf Area Index) measured indirect Satellite data (MODIS)-> obtain LAI estimates LAI distribution mapped over terrain D. Parvu, H. Hangan

  25. WINDEEE : Wake Experiment Phase-Locked PIV measurements  8 azimuthal angles between 0 and 120  Two axial locations: x/R =1 and x/R =2  At each azimuthal angle 4 PIV tiles  P. Hashemi-Tari, K. Siddiqui, H. Hangan – Wind Energy (2015)

  26. WindEEE: Wake Experiment Radial profiles of axial deficit velocities at X=R  and X=2R for 8 azimuth angles of blade

  27. WindEEE: Wake Experiment Radial profiles of radial velocities at X=R and  X=2R for 8 azimuth angles of blade

  28. WindEEE: Wake Experiment Streamlines of Instantaneous Velocity Radial profiles of Turbulence Intensity  

  29. WindEEE : Wake Experiment Scaling Effects 

  30. WindEEE : Particle Tracking Techniques D. Parvu, A. Costache, M. Refan, H. Hangan – ICWE14

  31. NUMERICAL 1 2 WRF  3 Data Reanalysis  4 Urban Microscale CFD  Convective forcing modeling 

  32. Numerical Modeling: NCEP / NCAR Reanalysis Kalnay et al (1996) data from 1948 to Dec. 2014 2.5° latitude by 2.5° longitude spatial resolution bilinear interpolation method 4 times a day, daily, and monthly Mean daily values for two wind components 67 years, 24473 data records

  33. Numerical Modeling: Trend Data Analysis Mean Annual Wind Speed per Direction Mann-Kendall non-parametric test for trend (Mann, 1945; Kendall, 1970) Sen’s slope estimator (Sen, 1968) 𝑜−1 𝑜 𝑇 = 𝑡𝑕𝑜 𝑦 𝑧 2 − 𝑦 𝑧 2 . 𝑧 1 =1 𝑧 2 =𝑧 1 +1 𝑍 = 𝑅 𝑧 − 1948 + 𝐶, D. Romanic, H. Hangan-Sustainable Cities and Society (2015)

  34. Numerical Modeling: Spectral Analysis Low frequency wind spectra (blue line) 95% confidence intervals (grey line) Welch method (Welch, 1967) Sunspots: SILSO World Data Center, 1948 13-month moving average applied on mean monthly wind speed data σ.995 confidence level

  35. Numerical Modeling: Urban Environment  WRF  Nested run (4 domains)  ~30 million cells  Chugach supercomputer  1024 cores  ~20-30 min  Kraken supercomputer  576 cores  ~ 120 min  CFD and downscaling  ~3 million cells  ~15 min  Total time  ~< 1 hour

  36. Numerical Modeling: Urban Environment (4) 5.8% 7.6% (9) 12.3% (8) 9.6% (4) 4.9 % (13)

  37. Numerical Modeling: Downburst and Tornado

  38. FULL SCALE ROTATE Campaign  Doppler on Wheels  GBDTV Analysis  Similarity Analysis  PEIWEE Campaign  LiDAR  Topography  Canopy  Wake 

  39. Recent Campaigns: ROTATE Data provided by CSWR ROTATE=R adar O bservations of T ornadoes A nd T hunderstorms E xperiment – 2012 G round- B ased V elocity T rack D isplay Single-Doppler radar data of five tornadoes: Elie, Manitoba tornado 2007 Kellerville, TX 1995 (F4), Spencer, SD 1998 (F4), Stockton, Oklaunion, TX 2000 (F1), Stratford, TX 2003 (F0), KS 2005 (F1), Clairemont, TX 2005 (F0), Happy, TX 2007 (EF0) and Goshen County, WY 2009 (EF2) Nine tornado volumes: cover wind speeds associated with EF0 to EF3 rated tornadoes Bennington Kansas EF-4 tornado 2013

  40. Tornadoes: GBDTV Analysis V tan (m/s) 40 1000 38 36 34 32 800 30 28 26 24 22 600 z (m) 20 18 16 14 12 400 DOW 3 10 8 6 4 200 2 0 5 0 0 200 400 600 800 Doppler velocity (m/s) contour map of r (m) the Happy, TX 2007 tornado at 0203:20 UTC and at 0.3˚ radar beam angle

  41. Tornadoes: Full Scale Data Clairemont, Happy, Happy, Goshen , Goshen , Goshen, Stockton, Spencer, Spencer, volume1 volume1 volume2 volume1 volume2 volume3 volume1 Volume1 Volume2 Volume (Clr v1) (Hp v1) (Hp v2) (GC v1) (GC v2) (GC v3) (Stc v1) (Sp v1) (Sp v2) EF EF0 EF1 EF0 EF1 EF1 EF1 EF2 EF3 EF3 z min (m) 25 71 38 97 75 30 43 51 85 V trans (m/s) 1.2 19.4 19.4 9.49 9.49 9.49 10.95 15 15 V tan,max 36.3 39 37.9 41.6 42 42.9 50.2 58.2 62 (m/s) r c (m) 96 160 160 150 150 100 220 192 208 z max (m) 200 250 50 42 160 41 40 40 40 Vertical VBA 1-cell TD 2-cell VBA 2-cell After TD 2-cell 2-cell structure

  42. Tornadoes: Scaling • The overall maximum 40 z= 40 m tangential velocity z= 80 m z= 120 m z= 160 m V tan,max = V tan ( r c,max , z max ) z= 200 m 30 z= 240 m z= 280 m V tan (m/s) z= 320 m Velocity scale • 20 V tan,max,D / V tan,max,S λ v = Length scale • 10 r c,max,D / r c,max,S Goshen County , WY 2009 (EF2) λ l = z max,D / z max,S 0 0 0.2 0.4 0.6 0.8 1 R (km) r (km)

Recommend


More recommend