nonlinear planetary wave dynamics of quasi stationary
play

Nonlinear Planetary Wave Dynamics of Quasi-Stationary Anomalies - PowerPoint PPT Presentation

Nonlinear Planetary Wave Dynamics of Quasi-Stationary Anomalies Grant Branstator National Center for Atmospheric Research I. Planetary Wave Fundamentals (Sunday) a. Timescales b. Recurring structures c. Four basic processes d. Quasi-linear


  1. Nonlinear Planetary Wave Dynamics of Quasi-Stationary Anomalies Grant Branstator National Center for Atmospheric Research I. Planetary Wave Fundamentals (Sunday) a. Timescales b. Recurring structures c. Four basic processes d. Quasi-linear stochastic theory e. Nonlinear signatures f. Nonlinear mechanisms II. Application to Climate Change (Tuesday)

  2. January 300mb psi high/positive low/negative

  3. January 300mb psi

  4. h500 Average temporal spectrum T31 LFV Transient eddies

  5. Psi300 zonal wavenumber spectra for Nature LFV synoptic 2 4 6 8 10 12 14 Zonal wave number

  6. Psi300 zonal wavenumber spectra for Nature barotropic LFV synoptic baroclinic 2 4 6 8 10 12 14 Zonal wave number

  7. psi300 x “Teleconnection Patterns” x

  8. h500 EOFs Most predictable patterns for 10d forecasts

  9. El Nino composite h500 anomalies 1958,1966,1973,1983,1987,1992

  10. Low frequency perturbations are: 1. Large-scale 2. On a rotating planet 3. Barotropic 4. Non-divergent in the upper tropospheric midlatitudes 5. Relatively weak compared to time mean state Therefore: Linear, barotropic vorticity dynamics should be important for understanding their behavior.

  11. Basic quasi-linear barotropic dynamics ∂ς ∂ t = − r ψ ⋅ ∇ ( ς + f ) v 2 Ω sin ϕ T ∫ ( • ) = 1 ( • ) dt + ( • )' = () + ( • )' T 0 ∂ς ' = − r ψ ⋅ ∇ ( ς + f ) − r ψ ⋅ ∇ς ' − r ψ ⋅∇ ( ς + f ) − r ψ ⋅∇ς ' v v v ' v ' ∂ t r ψ ⋅ ∇ ( ς + f ) = − r ψ ⋅∇ς ' v v ' ∂ς ' = − r ψ ⋅ ∇ς ' − r ψ ⋅∇ ( ς + f ) − ( r ψ ⋅∇ς ' − r ψ ⋅∇ς ' ) ' ' ' v v v v ∂ t ∂ ′ ς * − r # •∇ ′ ς − r ς − r ∂ t = − [ u ] ′ ς x − ′ v β v •∇ ′ ′ v •∇ ′ ′ ς ∂ς ' v ∂ t ≅ − r ψ ⋅ ∇ς ' − r ψ ⋅∇ ( ς + f ) + damping + noise v v ' I II III IV

  12. Linear Initial Value Problem Using Normal Mode Basis ∂ ′ ς ∂ t = − r ς − r ψ ⋅∇ ′ ψ ⋅∇ ( ς + f ) ′ v v = L ′ ς Say LE = σ E σ t = ( E R + iE I ) e σ R t (cos σ I t + i sin σ I t ) Then ′ ς ( t ) = Ee = e σ R t { E R cos σ I t − E I sin σ I t } + i {...} is a solution. ∑ Thus, if ′ ς ( t = 0) = j is real, a j E j ∑ j t { j cos σ I j sin σ I then ′ ς (t) = j t − E I σ R j t } a j e E R j

  13. For solid body rotation background u = u e cos ϕ ′ ′ ∂ ς ∂ ς * 1 1 d f ′ = − − ( ) ( ) u v ψ ∂ ∂ λ ϕ e t a a d m Y Normal modes are spherical harmonics n with frequency   2 Ω * σ I = u a −   e m n ( n + 1)  

  14. Wallace and Lau (1985) … ′ ′ ∂ ∂ < + > ∂ ∂ 2 2 KE ( u v ) u u ′ ′ ′ ′ = = − < − > − < >= + 2 2 ( u v ) u v CKx CKy ∂ ∂ ∂ ∂ t t x y

  15. Mean Jan 300mb Psi Linear Vorticity Equation

  16. Linear Vorticity Equation

  17. (Branstator, 1985) (Simmons et al., 1983)

  18. Fastest Growing Normal Mode (Simmons et al., 1983)

  19. Basic linear barotropic stochastic dynamics ∂ς ∂ t = − r ψ ⋅ ∇ ( ς + f ) v T ∫ ( • ) = 1 ( • ) dt + ( • )' = () + ( • )' T 0 ∂ς ' = − r ψ ⋅ ∇ ( ς + f ) − r ψ ⋅ ∇ς ' − r ψ ⋅∇ ( ς + f ) − r ψ ⋅∇ς ' v v v ' v ' ∂ t r ψ ⋅ ∇ ( ς + f ) = − r ψ ⋅∇ς ' v v ' ∂ς ' = − r ψ ⋅ ∇ς ' − r ψ ⋅∇ ( ς + f ) − ( r ψ ⋅∇ς ' − r ψ ⋅∇ς ' ) v v ' v ' v ' ∂ t ∂ς ' ∂ t ≅ − r ψ ⋅ ∇ς ' − r ψ ⋅∇ ( ς + f ) + damping + noise v v ' (Dymnikov, 1988)

  20. Stochastically Driven Linear Barotropic Vorticity Equation Variance

  21. Stochastically Driven Linear Barotropic Vorticity Equation Variance

  22. Linear Stochastic Model of Planetary Waves ∂ ′ ς ∂ t = − r ς − r v •∇ ′ v •∇ ( ς + f ) + damping + Gaussian noise ′ Signatures of linear behavior: � Gaussian PDFs � Elliptical trajectories

  23. Projections onto EOF1&2 Low pass winter h500 EOFs PDF G A R Cheng & Wallace (1992)

  24. 10d means from 7,500,000d 10d means from 5000d sample sample Berner & Branstator

  25. Slices through AGCM phase space Berner & Branstator (2007)

  26. Branstator & Berner (2005)

  27. Mean 24hr increments Branstator & Berner (2005)

  28. Branstator & Berner (2005)

  29. ∂ς ' = − r ψ ⋅ ∇ς ' − r ψ ⋅∇ ( ς + f ) − ( r ψ ⋅∇ς ' − r ψ ⋅∇ς ' ) v v ' v ' v ' ∂ t ∂ς ∂ t

  30. Multiple Equilibria following Charney & Devore (1979) and Held (1983) ∂ [ u ] ∂ t = −κ ([ u ] − [ u e ]) − D ([ u ]) for D([u]) = ∂ * ∂ h t * ] + 1 * v ∂ y[ u [ p ∂ x ] h 0 C D ([ u ]) −κ ([ u ] − [ u e ]) A

  31. PDF Lorenz63 = − σ + σ & X X Y = − + − & Y XZ rX Y = − & Z XY bZ

  32. h500 Average temporal spectrum T31 LFV Transient eddies

  33. − 5 2 1 100 10 x m s − − 2 2 13 4 2 2 x 10 m s 5 m s

  34. Linear Stormtrack Model ∂ ς ' r r ′ = − ⋅ ∇ ς − ⋅∇ ς + + v v ' ... damping ∂ t ∂ T ' r r = − ⋅ ∇ − ⋅∇ + + v T ' v ' T ... damping ∂ t ∂ D ' = ... ∂ t ∂ p = s ... ∂ t

  35. Psi300 NAO+ NAO-

  36. ∂ ς r = − ⋅ ∇ ς + − v ( f ) ... ψ ∂ t T 1 ∫ ′ = + () () dt ( ) T 0 ′ ∂ ς r r r r ′ = − ⋅ ∇ ς + − ⋅ ∇ ς − ⋅∇ ς − ⋅∇ ς v ( f ) v v ' v ' '... ψ ψ ψ ψ ∂ t r r ⋅ ∇ ς + = − ⋅∇ ς + v ( f ) v ' ' ... ψ ψ ′ ∂ ς r r r r ′ = − ⋅ ∇ ς − ⋅∇ ς − ⋅∇ ς − ⋅∇ ς v v ' ( v ' ' v ' ' )... ψ ψ ψ ψ ∂ t r r ′ = − ⋅ ∇ ς − ⋅∇ ς + + v v ' damping noise ... T ′ ψ ψ ς

  37. E=14.8d E=5.6d

  38. LinBaroVorEqn + CCM0 LinBaroVorEqn TranEddyFeedbk 18% 21% 36%

  39. Nonlinear Planetary Wave Dynamics of Quasi-Stationary Anomalies Grant Branstator National Center for Atmospheric Research I. Planetary Wave Fundamentals (Sunday) a. Timescales b. Recurring structures c. Four basic processes d. Quasi-linear stochastic theory e. Nonlinear signatures f. Nonlinear mechanisms II. Application to Climate Change (Tuesday)

Recommend


More recommend