nonequilibrium dynamics of superconductors ryo shimano
play

Nonequilibrium dynamics of superconductors Ryo Shimano Cryogenic - PowerPoint PPT Presentation

Nonequilibrium dynamics of superconductors Ryo Shimano Cryogenic Research Center and Department of Physics University of Tokyo Outline (1) Introduction (2) Photoexcitation in s-wave superconductor (3) Higgs mode in a s-wave superconductor NbN


  1. Nonequilibrium dynamics of superconductors Ryo Shimano Cryogenic Research Center and Department of Physics University of Tokyo

  2. Outline (1) Introduction (2) Photoexcitation in s-wave superconductor (3) Higgs mode in a s-wave superconductor NbN (4) Higgs mode in d-wave cuprate superconductors (5) Photoinduced metastable phase

  3. Concept of Photoinduced Phase Transition Yutaka Toyozawa, J. Phys. Soc. Jpn. 50 , 1861(1981) Keiichiro Nasu, Rep. Prog. Phys. 67 , 1607(2004)

  4. Dynamical localization N. Tsuji, T, Oka, P. Werner, and H . Aoki Phys. Rev. Lett 106 , 236401(2011) Interaction Quench T. Ishikawa et al., Nat. Commun. 5 , 5528(2014)

  5. Photocreation of Berry phase # realized in cold atoms: “Experimental realization of the toplological Haldane model with ultracold Fermions”, G. Jotzu et al., Nature 515 , 237 (2014)

  6. Towards artificial light-control of quantum material Nonequilibrium light THz orbital Superconductor charge lattice collective modes(Higgs, N-G) competing order, hidden phase pairing symmetry ( p,d,.. ) spin Floquet Engineering light-induced superconductivity control of topological number photocontrol higher order harmonics generation Ultrafast control of multiferroics electromagnon, skirmion Light-control of ferroelectricity Light-control of magnetism

  7. Advanced Light Source/Probe Time resolved spectroscopy ARPES XRD Electron Diffraction Terahertz + Advanced light source Intense THz pulse mid-IR fs~as optical pulse

  8. Elementary excitations in condensed matter systems 1THz=4meV=300 m m=33cm -1 ~50K Microwave ・・・ Submillimeter wave Far-IR Mid-IR N-IR visible UV 30cm 3cm 300 m m 30 m m 3 m m 3mm 30nm 300nm 10 9 10 10 11 12 13 14 15 16 10 10 10 10 10 10 PHz THz GHz plasmon in doped semiconductors, pseudo gap (High Tc SCs) antiferromagnetic resonance exciton ionization energy phonons, molecular vibrations carrier scattering rate g 2 D BCS (T c =10K) 40eV 4 m eV 40 m eV 4eV 0.4meV 4meV 40meV 0.4eV

  9. THz time-domain spectroscopy THz generation by femtosecond laser pulse Waveform and power spectrum Nonlinear crystal ( ZnTe, GaP,GaAs,…) Simultaneous measurements of amplitude and phase of E-field Determination of complex refractive Index without uisng Kramers-Kronig relation Imaging applications Time-resoved probe for ultrafast transient phenomena

  10. THz time-domain spectroscopy A gate optical pulse~10fs 10 M. Ashida, Jpn.J.Appl.Phys.47, 8221 (2008)

  11. Intense THz pulse generation from LiNbO 3 THz generation from LiNbO 3 J. Hebling et al ., Opt. Express 10 , 1161 (2002). : tilted pulse-front method J. Hebling et al ., J. Opt. Soc. Am. B 25 , B6 (2008). χ (2) (pm/V) Nonlinear n gr n ph 800nm THz crystal GaP 25 3.67 3.34 ZnTe 69 3.13 3.27 Large X (2) , but large phase mismatch LiNbO 3 168 2.25 4.96 tilted pulse-front method

  12. Intense THz pulse generation THz generation from LiNbO 3 J. Hebling et al ., : tilted pulse-front method Opt. Express 10 , 1161 (2002). 0.8 Electric Field (MV/cm) gate (a) wire grid × 3 (b) S. Watanabe, N. Minami, and R.Shimano, 0.4 Opt. Express 19 , 1528 (2011). parabolic 0.0 PM mirror (PM) Tight focusing with small PM Si × 6 -0.4 GaP 100kV/cm →700kV/cm LiNbO 3 0 2 4 6 8 10 PM Delay Time (ps) λ/4 f=80 Intensity (arb. units) 1.0 (c) Wollaston λ/2 prism 0.5 balanced grating f=-40 photo detector 0.0 f=80 0 1 2 3 Frequency (THz)

  13. Development laser-based table top THz pulse generation 6 DAST (EPFL) 5 Two color air plasma with mid-IR pump (AALS) Peak E-field (MV/cm) E=6MV/cm→B=2T LiNbO 3 +Metamatel. 4 (MIT) 3 2 Two color air plasma (UTokyo) LiNbO 3 (Kyoto) 1 (UTokyo) (MIT) 0 2008 2010 2012 2014 2016 Year

  14. Outline (1) Introduction (2) Photoexcitation in s-wave superconductor (3) Higgs mode in a s-wave superconductor NbN (4) Higgs mode in d-wave cuprate superconductors (5) Photocontrol of superconductors

  15. Super-to-normal transition by quasiparticle injection Two constraints:   † Total electron density c c N k s k s k , s    Total QP density f N N k s q k , s      1     m * f k 1 exp E μ* model s k    1 d 1    c   m * k tanh E Gap eq.   k N 0 V 2 E 2   c k       3 2 D D  D D  n  2 n 0 0 First order like transition C. S. Owen et al ., Phys. Rev. Lett. 28, 1559 (1972).

  16. Experiments in 1970’s

  17. Experiments in 1990’s: THz spectroscopy

  18. SDW gap dynamics in quasi-1D organic conductor

  19. Optical pump and THz probe experiment in a s-wave superconductor NbN M. Beck et al ., Phys. Rev. Lett. 107 , 177007 (2011).

  20. Near infrared excitation ① hot electron excitation by near infrared light ② relaxation of hot electrons through high energy emission ③ Cooper pair breaking by phonons ④ gradual suppression of superconductivity phonon Hot electron Near IR T * Energy DOS

  21. THz pumping: high density QP injection at the gap edge THz pulse Energy DOS ・ direct injection of QPs at the gap edge ・ nonequilibrium SC state dynamics

  22. THz pump THz probe experiment gate wire grid Si sample wire grid Si pump THz ZnTe (LiNbO 3 ) probe THz (ZnTe) balanced detection

  23. THz pump and THz probe in NbN

  24. THz pump and THz probe dynamics

  25. Order parameter dynamics in the BCS approximation Quench Problem: eff faster than the response rapid switching of the orientation of b k time of the pseudospin d   eff σ 2 b σ k k k dt  D D         x y ( t ) i ( t ) V ( ( t ) i ( t )) k k k   D D      eff b ( t ), ( t ), k k Order parameter change induced by external perturbation = change in the orientation of b k eff Barankov and Levitov, Collective precession of the pseudospin PRL 96 , 230403 (2006) = order parameter oscillation (Higgs mode)

  26. THz pump and THz probe dynamics THz pump and THz probe dynamics ・ What is this overshooting signal? Higgs?

  27. Outline (1) Introduction (2) Photoexcitation in s-wave superconductor (3) Higgs mode in a s-wave superconductor NbN (4) Higgs mode in d-wave cuprate superconductors (5) Photocontrol of superconductors

  28. History 1957 BCS theory of superconductor (Bardeen, Cooper&Schrieffer) 1958 Prediction of amplitude mode in superconductors (Anderson) 1960 Theory of spontaneous symmetry breaking (Nambu) 1960-61 Nambu-Goldstone theorem 1963-66 Anderson-Higgs mechanism(Anderson, Higgs) http://www.nobelprize.org/ BCS theory: Energy dispersion of the nonzero order parameter Energy dispersion of BCS Bogoliubov particle and antiparticle     Δ ( k ) V ( k , k ' ) c k c 0 quasipartice    ' k ' k ' breaks the invariance of the gauge transformation    i θ † † i θ c ce , c c e The dispersion of the quasiparticle

  29. Goldstone Theorem When spontaneous symmetry breaking occurs, massless collective mode with respect to the order parameter appears Free Energy E amplitude mode phase mode ( Nambu-Goldstone mode ) Re Ψ k Im Ψ I n particle physics: such a massless Nambu-Goldstone boson has never been observed. Instead, massive gauge bosons (W, Z) were found. Is N-G theorem wrong?

  30. Anderson-Higgs mechanism Free Energy Y Re Y 0 Im Y Local gauge transformation massive amplitude mode massive gauge boson

  31. Anderson-Higgs mechanism “ Anderson-Higgs mechanism ” or “ Brout-Englert-Higgs mechanism ” “ ABEGHHK'tH mechanism “ [for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and 't Hooft] Z,W boson, p-mesons, plasmon E amplitude mode phase mode ( Nambu-Goldstone mode ) k 0

  32. Massive gauge boson(photon) eating N-G mode in superconductors Meissner-Ochsenfeld effect 1933 Mass of transverse component of photon T > T c T < T c Meissner plasmon E “Plasmons, Gauge Invariance, and Mass” single particle Phys. Rev. 130, 439 (1963) excitations 2 D Higgs mode k Anderson 0

  33. PRB 1958

  34. Theoretical investigations: quantum quench problem Quenching the interaction U(t) much faster than τ Δ ~ ℏ/Δ ( Δ:order parameter ) Emergence of order parameter oscillation (Higgs mode) Free energy Theoretical studies for dynamics of nonequilibrium BCS state after nonadiabatic excitation Volkov et al ., Sov. Phys. JETP 38 , 1018 (1974). Barankov et al ., PRL 94 , 160401 (2004). Yuzbashyan et al ., PRL 96 , 230404 (2006). Gurarie et al ., PRL 103 , 075301 (2009). Podolsky, PRB 84 , 174522 (2011). A. P. Schnyder et al., PRB84, 214513 (2011) N. Tsuji et al., PRB 88 ,165115 (2013). 0 Re Ψ N. Tsuji et al ., PRL 110 , 136404 (2013).

  35. Higgs mode in superconductors: NbSe 2 BCS-CDW coexistent compound M.-A. Measson, et al., R. Sooryakumar and M. V. Klein, PRL 45 , 660 (1980). PRB 89 , 060503 (2014). P.B. Littlewood and C. M. Varma, PRL 47 , 811 (1982). For a recent review: D. Pekker and C. M. Varma, Annual Review of Condensed Matter Physics 6 , 269 (2015)

  36. Instead of quenching the interaction,… Quasiparticle injection by ultrafast optical pulse Energy photon h n quasiparticle Cooper pair E F Energy DOS 2D (0) 2D (T) The gap (order parameter) is determined self-consistently with the quasiparticle distribution f (  ) DOS

Recommend


More recommend