spin and orbital freezing in unconventional
play

Spin and orbital freezing in unconventional superconductors Philipp - PowerPoint PPT Presentation

Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with: Shintaro Hoshino (Saitama) Hiroshi


  1. Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017

  2. Spin and orbital freezing in unconventional superconductors In collaboration with: Shintaro Hoshino (Saitama) Hiroshi Shinaoka (Saitama) Karim Steiner (Fribourg) Kyoto, November 2017

  3. Introduction Generic phase diagram of unconventional superconductors Superconducting dome next to a magnetically ordered phase Non-Fermi liquid metal above the superconducting dome Temperature bad metal magnetic order Fermi liquid pressure, doping, ... superconductivity

  4. Method Georges and Kotliar, PRB (1992) Dynamical mean field theory DMFT: mapping to an impurity problem lattice model impurity model G latt ≡ G imp t t k Σ latt ≡ Σ imp Impurity solver: computes the Green’s function of the correlated site Bath parameters = “mean field”: optimized in such a way that the bath mimics the lattice environment

  5. Method Werner et al., PRL (2006) CT -QMC solvers allow efficient simulation of multiorbital models � � H loc = − µn α , σ + Un α , ⇥ n α , ⇤ α , σ α � U ⌅ n α , σ n β , � σ + ( U ⌅ − J ) n α , σ n β , σ + α > β , σ J ( ψ † α , ⇤ ψ † β , ⇥ ψ β , ⇤ ψ α , ⇥ + ψ † β , ⇥ ψ † � β , ⇤ ψ α , ⇥ ψ α , ⇤ + h.c. ) − α ⇧ = β Relevant cases: 4 electrons in 3 orbitals: SrRu 2 O 4 3 electrons in 3 orbitals, J <0: A 3 C 60 6 electrons in 5 orbitals: Fe -pnictides

  6. 3-orbital model Werner, Gull, Troyer & Millis, PRL (2008) Phase diagram for U � = U − 2 J, J/U = 1 / 6 , β = 50 16 14 12 10 frozen U/t 8 Fermi liquid moment 6 4 glass transition Mott insulator ( β t=50) 2 0 0 0.5 1 1.5 2 2.5 3 n Metallic phase: “transition” from Fermi liquid to spin-glass Narrow crossover regime with self-energy Im Σ /t ∼ ( i ω n /t ) α , α ≈ 0 . 5

  7. 3-orbital model Werner, Gull, Troyer & Millis, PRL (2008) Fit self-energy by − Im Σ ( i ω n ) = C + A ( ω n ) α 1 0.8 intercept C, exponent α 0.6 0.4 exponent α ( β t=50) intercept C 0.2 exponent α ( β t=100) intercept C 0 0 2 4 6 8 10 U/t Square-root self-energy coincides with on-set of frozen moments

  8. crossover spin-freezing Fermi-liquid spin-frozen 3-orbital model Hoshino & Werner, PRL (2015) Spin-freezing leads to a small “quasi-particle weight” z z ≈ 1 / (1 − Im Σ ( i ω 0 ) / ω 0 ) 5 1 (c) 4 0.8 3 0.6 2 0.4 Ising 1 0.2 rot. inv. 3 0 0 0 0.5 1 1.5 2 2.5 3 2.5 no quasi-particles in spin-frozen regime

  9. 3-orbital model Werner, Gull, Troyer & Millis, PRL (2008) Spin-spin and orbital-orbital correlation functions 0.25 n=1.21 n=1.75 0.2 n=2.23 <n 1 (0)n 2 ( τ )>, <S z (0)S z ( τ )> n=2.62 n=2.97 0.15 0.1 freezing of spin moments 0.05 0 -0.05 -0.1 0 5 10 15 20 25 τ t no freezing of orbital moments

  10. 3-orbital model Hoshino & Werner, PRL (2015) Consider the local susceptibility Z β χ loc = d τ h S z ( τ ) S z (0) i 0 and its dynamic contribution Z β ∆ χ loc = d τ [ h S z ( τ ) S z (0) i � h S z ( β / 2) S z (0) i ] 0 subtract the (frozen) long-time value

  11. spin-frozen spin-freezing Fermi-liquid crossover 3-orbital model Hoshino & Werner, PRL (2015) Consider the local susceptibility and its dynamic contribution ∆ χ loc χ loc 50 5 1 (b) (c) 40 4 0.8 Ising Ising 30 3 0.6 Ising rot. inv. 20 2 0.4 10 1 0.2 0 3 0 0 0 0 0.5 1 1.5 2 2.5 Crossover regime is characterized by large local moment fluctuations

  12. 3-orbital model Werner, Gull, Troyer & Millis, PRL (2008) “quasi-particle weight” z from De’ Medici, Mravlje & Georges, PRL (2011) Hund coupling J : Strongly correlated metal far from the Mott transition

  13. 3-orbital model Werner, Gull, Troyer & Millis, PRL (2008) “quasi-particle weight” z from De’ Medici, Mravlje & Georges, PRL (2011) large local moment fluctuations Hund coupling J : Strongly correlated metal far from the Mott transition

  14. Strontium Ruthenates Werner, Gull, Troyer & Millis, PRL (2008) A self-energy with frequency dependence implies an Σ ( ω ) ∼ ω 1 / 2 optical conductivity σ ( ω ) ∼ 1 / ω 1 / 2

  15. Pnictides Strongly correlated despite moderate U 5.0 5.0 LDA total LDA p orbitals d spectral function d spectral function d spectral function 4.5 4.5 0.18 LDA d orbitals 4.0 4.0 0.12 3.5 3.5 LDA dynamic U 3.0 3.0 ρ ( ω ) (eV -1 ) ρ ( ω ) (eV -1 ) static U -1 incoherent metal state 0.06 2.5 2.5 resulting from Hund’s coupling ρ ω -16 -12 -8 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4 ω (eV) ω (eV) ω Haule & Kotliar, NJP (2009)

  16. Pnictides Strong doping and temperature dependence of electronic structure BaFe 2 As 2 : conventional FL metal in the underdoped regime non-FL properties near optimal doping incoherent metal in the overdoped regime Werner et al., Nat. Phys. (2012)

  17. Pnictides Strong doping and temperature dependence of electronic structure

  18. Long-range order Hoshino & Werner, PRL (2015) Identify ordering instabilities by divergent lattice susceptibilities Calculate local vertex from impurity problem Approximate vertex of the lattice problem by this local vertex Solve Bethe-Salpeter equation to obtain lattice susceptibility The following orders (staggered and uniform) are considered: diagonal orders: charge, spin, orbital, spin-orbital off-diagonal orders: orbital-singlet-spin-triplet SC, orbital-triplet-spin-singlet SC

  19. [arb. unit] Long-range order Hoshino & Werner, PRL (2015) 3-orbital model, Ising interactions 2.5 2.5 (b) (c) FM FM 2 2 AFM near half-filling FM at large U away from 1.5 1.5 Spin-freezing Spin-freezing half-filling crossover crossover spin-triplet superconductivity AFM AFM 1 1 in the spin-freezing SC crossover region SC 0.5 0.5 Normal Normal 0 0 2.5 3 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5

  20. [arb. unit] Long-range order Hoshino & Werner, PRL (2015) 3-orbital model, Ising interactions (lower temperature) 2.5 (c) FM FM 2 AFM near half-filling FM at large U away from 1.5 Spin-freezing half-filling crossover U spin-triplet superconductivity AFM AFM 1 in the spin-freezing crossover region SC 0.5 Normal 0 2 2.5 3 0 0.5 1 1.5 2 2.5 3 parameter regime relevant for Sr 2 RuO 4

  21. Long-range order Hoshino & Werner, PRL (2015) T c dome and non-FL metal phase next to magnetic order (a) (b) 0.06 0.1 Normal Normal bad metal bad metal 0.08 0.04 0.06 Spin-freezing Spin-freezing crossover crossover 0.04 0.02 AFM FM 0.02 SC Fermi Fermi SC liquid liquid 0 0 1 1.5 2 2.5 3 0 0.5 1 1.5 2 Generic phasediagram of unconventional SC without QCP!

  22. Long-range order Hoshino & Werner, PRL (2015) T c dome and non-FL metal phase next to magnetic order 0.01 spin-rotationally Ising limit invariant limit 0.008 Normal 0.006 0.004 SC 0.002 0 0 0.2 0.4 0.6 0.8 1 Need spin-anisotropy (SO coupling) for high T c probably relevant for: Sr 2 RuO 4 , UGe 2 , URhGe, UCoGe, ...

  23. Long-range order Hoshino & Werner, PRL (2015) Pairing induced by local spin fluctuations Weak-coupling argument inspired by Inaba & Suga, PRL (2012) Effective interaction which includes bubble diagrams: ˜ U αγ χ γ ( q ) ˜ X U αβ ( q ) = U αβ − U γβ ( q ) γ Effective inter-orbital same-spin interaction U 1 " , 2 " (0) = U 0 − J − [2 UU 0 + ( U 0 − J ) 2 + U 0 2 ] χ loc ˜ in the weak-coupling regime: χ loc = ∆ χ loc

  24. Crystal field splitting Hoshino & Werner, PRB (2016) Complicated phase diagrams, even in the two-orbital case High-spin/low-spin transitions Werner & Millis, PRL (2007) 10 Mott insulator level (spin triplet for J/U=0.25) high spin crossing 8 6 J/U=0 J/U=0.25 U/t 4 orbitally polarized 2 insulator low spin metal 0 0 0.5 1 1.5 2 2.5 3 3.5 ∆ /t

  25. Crystal field splitting Hoshino & Werner, PRB (2016) Complicated phase diagrams, even in the two-orbital case High-spin/low-spin transitions Werner & Millis, PRL (2007) 10 Mott insulator level (spin triplet for J/U=0.25) high spin crossing 8 6 J/U=0 J/U=0.25 U/t excitonic order Kunes et al., PRB (2014) 4 orbitally polarized 2 insulator low spin metal 0 0 0.5 1 1.5 2 2.5 3 3.5 ∆ /t

  26. Crystal field splitting Hoshino & Werner, PRB (2016) Complicated phase diagrams, even in the two-orbital case High-spin/low-spin transitions Werner & Millis, PRL (2007) 10 Mott insulator level (spin triplet for J/U=0.25) high spin crossing 8 6 J/U=0 J/U=0.25 U/t excitonic order Kunes et al., PRB (2014) 4 orbitally polarized spin freezing 2 insulator crossover low spin metal 0 0 0.5 1 1.5 2 2.5 3 3.5 ∆ /t

Recommend


More recommend