new tools for chemical bonding analysis
play

New tools for chemical bonding analysis Eduard Matito Donostia - PowerPoint PPT Presentation

New tools for chemical bonding analysis Eduard Matito Donostia International Physics Center February 2020. Girona This material is available All these slides and other material will be uploaded at: http://iqc.udg.edu/ eduard/master.html


  1. The Pair Density Born’s interpretation can be further extended to include electron pairs, � � d n | Ψ( 1 , 2 , . . . , N ) | 2 d 1 d 2 P ( 1 , 2 ) d 1 d 2 = d 3 . . . P ( 1 , 2 ) is the probability of finding two electrons, one at 1 and the other at 2 , regardless of the position of the other N − 2 electrons. The pair density is obtained from it, ρ 2 ( 1 , 2 ) = N ( N − 1) P ( 1 , 2 ) Eduard Matito MACMoM: New Tools 9 / 87

  2. The Pair Density Born’s interpretation can be further extended to include electron pairs, � � d n | Ψ( 1 , 2 , . . . , N ) | 2 d 1 d 2 P ( 1 , 2 ) d 1 d 2 = d 3 . . . P ( 1 , 2 ) is the probability of finding two electrons, one at 1 and the other at 2 , regardless of the position of the other N − 2 electrons. The pair density is obtained from it, ρ 2 ( 1 , 2 ) = N ( N − 1) P ( 1 , 2 ) By an analogous procedure we can obtain n -densities ( n > 2). Eduard Matito MACMoM: New Tools 9 / 87

  3. The Pair Density for Single Determinants The pair density can be easily written in terms of the 1-RDM for single-determinant methods � � ρ ( 1 ) ρ 1 ( 1 ; 2 ) � � ρ 2 ( 1 , 2 ) = � � ρ 1 ( 2 ; 1 ) ρ ( 2 ) � � which can be expanded in terms of molecular orbitals � � φ ∗ i ( 1 ) φ ∗ ρ 2 ( 1 , 2 ) = j ( 2 ) [ φ i ( 1 ) φ j ( 2 ) − φ j ( 1 ) φ i ( 2 )] i j Eduard Matito MACMoM: New Tools 10 / 87

  4. The Number of Pairs The expected number of electron pairs in the re- gion A is obtained from the pair density: � � N AA = ρ 2 ( 1 , 2 ) d 1 d 2 + N A A A Eduard Matito MACMoM: New Tools 11 / 87

  5. The Number of Pairs The expected number of electron pairs in the re- gion A is obtained from the pair density: � � N AA = ρ 2 ( 1 , 2 ) d 1 d 2 + N A A A the last term accounts for the self-pairing that is not included in antisymmetric wavefunctions (Pauli principle: Ψ( 1 , 1 , . . . ) = 0). Eduard Matito MACMoM: New Tools 11 / 87

  6. The Number of Pairs The expected number of electron pairs in the re- gion A is obtained from the pair density: � � N AA = ρ 2 ( 1 , 2 ) d 1 d 2 + N A A A the last term accounts for the self-pairing that is not included in antisymmetric wavefunctions (Pauli principle: Ψ( 1 , 1 , . . . ) = 0). The expected number of electron pairs with one electron at A and another at B reads: � � N AB = ρ 2 ( 1 , 2 ) d 1 d 2 + N A ∩ B A B Eduard Matito MACMoM: New Tools 11 / 87

  7. The variance of N A � � σ 2 [ N A ] = N AA − N A · N A = ρ 2 ( 1 , 2 ) d 1 d 2 − N A ( N A − 1) A A Eduard Matito MACMoM: New Tools 12 / 87

  8. The variance of N A � � σ 2 [ N A ] = N AA − N A · N A = ρ 2 ( 1 , 2 ) d 1 d 2 − N A ( N A − 1) A A The uncertainty is minimal when the electron pairs in A are maximal, i.e., when the electrons are independent. Eduard Matito MACMoM: New Tools 12 / 87

  9. The covariance The covariance of electrons populations gives the measure of how much the number of electrons in A and B change together. cov ( N A , N B ) = N AB − N A · N B r N A N B = cov ( N A , N A ) σ 2 [ N A ] = cov ( N A , N A ) σ [ N A ] σ [ N B ] Eduard Matito MACMoM: New Tools 13 / 87

  10. The Covariance Bounds Non-overlapping regions − min ( N A , N B ) ≤ cov ( N A , N B ) ≤ 0 Eduard Matito MACMoM: New Tools 14 / 87

  11. The Covariance Bounds Non-overlapping regions Overlapping regions ` ´ − min ( N A , N B ) ≤ cov ( N A , N B ) ≤ 0 − min N A \ C , N B \ C ≤ cov ( N A , N B ) ≤ N C Eduard Matito MACMoM: New Tools 14 / 87

  12. The Covariance Bounds Non-overlapping regions Overlapping regions ` ´ − min ( N A , N B ) ≤ cov ( N A , N B ) ≤ 0 − min N A \ C , N B \ C ≤ cov ( N A , N B ) ≤ N C The cov ( N A , N B ) gives a measure of the number of electron pairs shared between A and B . Eduard Matito MACMoM: New Tools 14 / 87

  13. The Electron Sharing Indices All the electrons in a molecule are either localized in an atom or delocalized with other atoms. The delocalization index (DI): δ AB = − cov ( N A , N B ) The localization index (LI): λ A = N A − σ 2 [ N A ] Bader, Stephens JACS 94 , 7391 (1975), Bader, Stephens CPL 26 , 445 (1974) Fulton JPC 97 , 7516 (1993); ´ Angy´ an, Mayer, Loos, JPC 98 , 5244 (1994) Fradera, Austen, Bader JPCA 103 , 304 (1999) Matito, Sol` a, Salvador, Duran Faraday Discuss. 135 , 325 (2007) Eduard Matito MACMoM: New Tools 15 / 87

  14. The Electron Sharing Indices We can decompose all the electrons in a molecule. � N = N A A N A = λ A + δ A 1 � = δ A δ AX 2 X � = A Fradera, Austen, Bader JPCA 103 , 304 (1999) Eduard Matito MACMoM: New Tools 16 / 87

  15. Born interpretation = chemical insight From Born’s interpretation we obtain average values that can be easily used to calculate other statistics such the covariance and higher-order moments (cumulants). Chemical Insight The key to obtain chemical insight is the Born interpretation of the n -densities, which provides a framework for counting electrons, electrons pairs, etc. Population analysis, delocalization indices, electron localization function and indicator (ELF and ELI), etc. are based on probabilities, expected values and other statistics derived from the Born’s interpretation of the wavefunction. Eduard Matito MACMoM: New Tools 17 / 87

  16. The atom: the origin Two opposite views of the world: Greeks vs. Hebrews. The least expected city: Abdera (ca. 460 BC). The atomists: philosophers that study the existence, looking for the primordial substance. Three people: Leucippus, Democritus and Epicurus. Two principles: the void and the full. Atomic pasive corpuscles: incompressible, compact, hard, indestructible, full and homogeoneous. Atoms are animated by an ethernal constant motion. Atoms have shape, order and position. The soul was made of atoms. Eduard Matito MACMoM: New Tools 18 / 87

  17. The atom: the origin Epicurus adds the weight as a property of atoms. Two giants opposed the atomistic view: Aristotle and Plato (geometric shapes). Clinamen introduced by Lucretius to defend Epicurus’ atom. When atoms move straight down through the void by their own weight, they deflect a bit in space at a quite uncertain time and in uncertain places, just enough that you could say that their motion has changed. But if they were not in the habit of swerving, they would all fall straight down through the depths of the void, like drops of rain, and no collision would occur, nor would any blow be produced among the atoms. In that case, nature would never have produced anything Clinamen adds free will (”the atom’s soul” —Ausgustine of Hippo) Eduard Matito MACMoM: New Tools 19 / 87

  18. Brownian Motion Observe what happens when sunbeams are admitted into a building and shed light on its shadowy places. You will see a multitude of tiny particles mingling in a multitude of ways... their dancing is an actual indication of underlying movements of matter that are hidden from our sight... It originates with the atoms which move of themselves (i.e., spontaneously). Then those small compound bodies that are least removed from the impetus of the atoms are set in motion by the impact of their invisible blows and in turn cannon against slightly larger bodies. So the movement mounts up from the atoms and gradually emerges to the level of our senses, so that those bodies are in motion that we see in sunbeams, moved by blows that remain invisible. On the Nature of Things (Lucretius, 60 BC). Eduard Matito MACMoM: New Tools 20 / 87

  19. The atom on the last 200 years In 1807 Dalton provided the modern atomic theory (father of chemistry). In 1891 Stoney coined the term electron . In 1913 Bohr formulated his atomic model including orbits and quanta. In 1924 Pauli provided the forth quantum number: the spin. The advent of quantum mechanics brought the concept of wavefunction. Eduard Matito MACMoM: New Tools 21 / 87

  20. The Lewis Model The chemical bond is one of the most fundamental concepts in chemistry. The Lewis model describes the electronic structure of a molecule in terms of electron pairs ( 2c-2e bonds ). These electron pairs can be classified as lone pairs (electrons which are localized in one atom), bonding pairs (electrons that are shared between two atoms), core electrons . However, this intuitive picture of electron distribution does not take into account the quantum nature of electrons . Eduard Matito MACMoM: New Tools 22 / 87

  21. Non-standard Chemical Bonds Eduard Matito MACMoM: New Tools 23 / 87

  22. An atom in a molecule Need to characterize an atom inside a molecule → atomic partition . From an atomic partition we can define atomic properties. There is not a unique atomic partition, there have been many suggestions. Two main groups: (i) Hilbert-space based. (ii) Real space partitioning. Eduard Matito MACMoM: New Tools 24 / 87

  23. An atom in a molecule: Hilbert-space partition Schr¨ odinger Eq. solved by a finite basis set → atomic orbitals. This partition uses the assignment of orbitals to atomic centers. Mulliken was the first to use it to compute populations. We use the definition of MOs in terms of AOs: m � φ A i ( 1 ) = c µ i φ µ ( 1 ) µ ∈ A This assignment provides a partition of the MO: m φ MO � φ A � � ( 1 ) = i ( 1 ) = c µ i φ µ ( 1 ) i A A µ ∈ A Mulliken, JCP 23 , 1833 (1955) Eduard Matito MACMoM: New Tools 25 / 87

  24. The Hilbert-space partition Advantatge: low cost (it is analytical!) Drawback: basis set dependence, not clear assignment (diffuse, polarization functions). Atom Basis set Mulliken QTAIM C DZ -0.982 -0.329 DZP 0.047 0.038 TZ2P+ 0.607 0.047 H DZ 0.246 0.082 DZP -0.012 -0.009 TZ2P+ -0.152 -0.011 Table: Bader and Mulliken atomic charges for methane calculated using three different basis sets (DZ: double zeta, DZP: double zeta with polarization and TZ2P+: triple zeta with double polarization and diffuse functions). Eduard Matito MACMoM: New Tools 26 / 87

  25. Quantum Theory of Atoms-in-Molecules Due to Richard F.W. Bader (1931-2012), McMaster University (Ontario). It consists on the topological analysis of the electron density. The density defines the distribution of electrons, and electrons determine the chemistry. Behind the electron density hides the concepts of atoms, bonds, chemical structure and structural stability. Bader RFW, ACR 18, 9-15 (1985) Eduard Matito MACMoM: New Tools 27 / 87

  26. QTAIM: Premises The atom that has the electron distribution makes the same contribution to the total energy of the system. Quantum subsystems are open systems defined in real space, their boundaries being determined by a particular property of the electronic charge density. QTAIM defines the atom through a partitioning of the real space as determined by the topological analysis of a molecular charge distribution. Bader RFW, Beddall PM, JCP 56, 3320-3329 (1972) Eduard Matito MACMoM: New Tools 28 / 87

  27. Topological analysis of the density The density is a continuous function. Defined at every point in the space. The critical points fulfill ∇ ρ ( r c ) = 0. The three curvatures (x,y,z) define the nature of the CP.  ∂ 2 ρ ( r )  ∂ 2 ρ ( r ) ∂ 2 ρ ( r ) ∂ 2 ρ ( r )   0 0 ∂ x 2 ∂ x 2 ∂ x ∂ y ∂ x ∂ z 1 ∂ 2 ρ ( r ) ∂ 2 ρ ( r ) ∂ 2 ρ ( r )  ∂ 2 ρ ( r )    0 0 H [ ρ ( r )] =  →     ∂ y 2 ∂ y ∂ x ∂ y 2 ∂ y ∂ z   1  ∂ 2 ρ ( r ) ∂ 2 ρ ( r ) ∂ 2 ρ ( r ) ∂ 2 ρ ( r )   0 0 ∂ z 2 ∂ z ∂ x ∂ y ∂ z ∂ z 2 1 Eduard Matito MACMoM: New Tools 29 / 87

  28. Critical points of a 3D function There are four types of critical points (CP):  ∂ 2 ρ ( r )  0 0 ∂ x 2   λ 1 0 0 1  ∂ 2 ρ ( r )  H [ ρ ( r )] → 0 0  = 0 0 λ 2   ∂ y 2     1 0 0 λ 3 ∂ 2 ρ ( r )  0 0 ∂ z 2 1 (3,-3) : Attractors (ACP) all the curvatures at r c are negative. (3,-1) : Bond CP ( BCP ) 2 curvatures are negative and 1 positive. (3,+1) : Ring CP ( RCP ) 1 curvatures are negative and 2 positive. (3,+3) : Cage CP ( CCP ) 3 curvatures are positive. Poncair´ e-Hopf relationship: n ACP − n BCP + n RCP − n CCP = 1 Eduard Matito MACMoM: New Tools 30 / 87

  29. The Atom in the Molecule An atom: a density maximum surrounded by a zero-flux gradient surface. ∇ ρ ( r ) · n ( r ) = 0 ∀ r ∈ S ( r ) (1) Gradient lines (red) perpendicular density isocontour lines (black). Blue line is the bond path : connects to nuclei and passes through the BCP. Eduard Matito MACMoM: New Tools 31 / 87

  30. The Bond Path: the Controversy A Bond Path: A Universal Indicator of Bonded Interactions The presence of a bond path [...] provide[s] a universal indicator of bonding between the atoms so linked. Bader RFW, JPCA 102, 7314-7223 (1998) Eduard Matito MACMoM: New Tools 32 / 87

  31. Topological analysis of water Eduard Matito MACMoM: New Tools 33 / 87

  32. Topological analysis of water Eduard Matito MACMoM: New Tools 34 / 87

  33. Topological analysis of water Eduard Matito MACMoM: New Tools 35 / 87

  34. Topological analysis of water Eduard Matito MACMoM: New Tools 36 / 87

  35. Topological analysis of water Eduard Matito MACMoM: New Tools 37 / 87

  36. Topological analysis of water Eduard Matito MACMoM: New Tools 38 / 87

  37. AIM2000. Molecular graphs and isocontour plots Molecular representation Isocountor plot with gradient lines Biegler-K¨ onig and Sch¨ onbohm, JCC 23 1489 (2002) Eduard Matito MACMoM: New Tools 39 / 87

  38. Input example to obtain wfn file with Gaussian #HF/6-31G* out=wfn comment 0 1 H 0.0 0.0 0.0 H 0.0 0.0 1.0 H2.wfn H2.wfn contains the molecular orbitals to construct the wavefunction of H2 at the HF/6-31G(d) level. Eduard Matito MACMoM: New Tools 40 / 87

  39. The Non-nuclear Attractors (NNA) Maxima other than the nuclei (NNA) are not frequent and often due to wavefunction artifacts. For instance, acetylene at the HF/6-31G*. There is, however, some exceptions: Li 2 and electrides. Martin-Pendas PRL 83, 1930-1933 (1999) Eduard Matito MACMoM: New Tools 41 / 87

  40. The Laplacian of the electron density The Laplacian of the density accounts for electron localization. ∇ 2 ρ ( r ) = ∂ 2 ρ ( r ) + ∂ 2 ρ ( r ) + ∂ 2 ρ ( r ) ∂ x 2 ∂ y 2 ∂ z 2 ∇ 2 ρ ( r ) < 0 electron accumulation → localization. ∇ 2 ρ ( r ) > 0 electron depletion → delocalization. Eduard Matito MACMoM: New Tools 42 / 87

  41. Real-Space partitions: Voronoi Cells Atoms defined as Voronoi polyhedra. Polyhedra constructed by assigning the point to the nearest atom. Provides non-overlapping partition of the real space. Only uses the molecular geometry: atom types are not explicitly considered. Eduard Matito MACMoM: New Tools 43 / 87

  42. Real-Space partitions: Hirshfeld Partition Atoms defined from weight functions. ρ 0 A ( r ) � w A ( r ) = w A ( r ) = 1 ∀ r B ρ 0 � B ( r ) A ρ 0 A is the density of the isolated atom ( promolecular density ) The promolecule formed by superposing the densities of the isolated B ρ 0 atoms. � B ( r ). Overlapping atomic partition. Drawback: The electronic state of the isolated atom can change the result. Eduard Matito MACMoM: New Tools 44 / 87

  43. Real-Space partitions: Becke Partition Uses Becke’s 1988 multicenter integration technique. Adapted by Mayer and Salvador in 2004: fuzzy atom . f A ( r ) � w A ( r ) = w A ( r ) = 1 ∀ r � B f B ( r ) A f A ( r ) are obtained from empirical atomic radii. Overlapping atomic partition. Becke-rho : uses the BCP as dynamic atomic radii. Mayer, Salvador, CPL 383 638 (2004) Matito, Sol` a, Salvador, Duran Faraday Discuss. 135 , 325 (2007) Salvador, Ramos, JCP 139 , 071103 (2013) Eduard Matito MACMoM: New Tools 45 / 87

  44. Summary: Atoms in a molecule (AIM) 1.- Mulliken : Hilbert space partitioning. a * AIM → set of orbitals. Overlapping Atoms (OA) * Cheap, exact (analytic). Issue : Basis set dependence (BSD). 2.- QTAIM : 3D-space, based on the density. b * AIM → an attractor surrounded by zero flux surface or by infinity . * Non-OA. No BSD. Issue: Expensive (Not w AIMall) 3.- Fuzzy : 3D-space, based on Becke Multicenter scheme. c * AIM → a sum weights through the space. * Uses weight functions. No BSD. Cheap. Issue : Bond-orders. 4.- Becke-rho : 3D-space, mixed Bader-Becke scheme. d * AIM → boundaries determined by BCPs. * Gives QTAIM-like results at fuzzy expense. a Mulliken, JCP 23 , 1833 (1955); b Bader, ACR 18 , 9 (1985) c Mayer, Salvador, CPL 383 638 (2004) d Matito, Sol` a, Salvador, Duran Faraday Discuss. 135 , 325 (2007) Eduard Matito MACMoM: New Tools 46 / 87

  45. Population analysis Assuming M number of basis functions an MO can be expanded: M φ i ( 1 ) ≡ φ MO � c µ i φ AO ( 1 ) = µ ( 1 ) i µ M | φ i ( 1 ) | 2 = � c µ i c ν i φ ∗ µ ( 1 ) φ ν ( 1 ) µν and N N M � � � | φ i ( 1 ) | 2 d 1 = � � � φ ∗ N = ρ ( 1 ) d 1 = n i c µ i c ν i n i µ ( 1 ) φ ν ( 1 ) d 1 µν i i � N M � � M � � φ ∗ � = µ ( 1 ) φ ν ( 1 ) d 1 = P µν S µν = Tr ( P · S ) c µ i c ν i n i µν µν i where P and S are the density matrix (in AO) and the overlap matrix, respectively. Eduard Matito MACMoM: New Tools 47 / 87

  46. Population analysis: Mulliken By taking the functions of each atom separately M � � � � N = ρ ( 1 ) d 1 = P µν S µν = Tr ( P · S ) ν A µ ∈ A we can define the Mulliken electron population and gross charge of A : M � � N A = P µν S µν ν µ ∈ A = Z A − N A Q A where Z A is atomic number of A . Gaussian keyword for electron population analysis: pop=full. Gaussian keyword for L¨ owin pop. and Mayer BO: iop(6/80)=1. Eduard Matito MACMoM: New Tools 48 / 87

  47. Population analysis: real space In the real space we need to perform a numerical integration over the atomic domain of A : � � | φ i ( 1 ) | 2 d 1 � N A = ρ ( 1 ) d 1 = n i A A i Q A = Z A − N A where we need the diagonal part of the atomic overlap matrix (AOM): � φ ∗ S ij ( A ) = i ( 1 ) φ j ( 1 ) d 1 A These analysis are done with the appropriate software One should check the accuracy of the integration performed. The computational cost can be beyond our possibilities. Eduard Matito MACMoM: New Tools 49 / 87

  48. The Exchange Correlation Function A popular function in DFT is the exchange-correlation density (XCD), � � ρ xc ( 1 , 2 ) = ρ ( 1 ) ρ ( 2 ) − ρ 2 ( 1 , 2 ) ρ xc ( 1 , 2 ) d 1 d 2 = N For single-determinant wavefunctions, ρ xc ( 1 , 2 ) = ρ ( 1 ) ρ ( 2 ) − ρ 2 ( 1 , 2 ) = ρ 1 ( 1 ; 2 ) ρ 1 ( 2 ; 1 ) = | ρ 1 ( 1 ; 2 ) | 2 ≥ 0 We can easily prove that N Ω 1 Ω 2 ≤ N Ω 1 N Ω 2 + N Ω 1 ∩ Ω 2 so that the maximum number of pairs between two regions is obtained by direct multiplication of its electron averages (plus the population of the intersection of the two regions). The maximum value is only achieved when the electrons are independent . Bader, Stephens JACS 94 , 7391 (1975), Bader, Stephens CPL 26 , 445 (1974) Eduard Matito MACMoM: New Tools 50 / 87

  49. The Electron Sharing Indices The XCD gives rise to the Electron Sharing Indices (ESI). The delocalization index (DI): � � δ ( A , B ) = d 1 d 2 ρ xc ( 1 , 2 ) A B The localization index (LI): � � λ ( A ) = d 1 d 2 ρ xc ( 1 , 2 ) A A Bader, Stephens JACS 94 , 7391 (1975), Bader, Stephens CPL 26 , 445 (1974) Fulton JPC 97 , 7516 (1993); ´ Angy´ an, Mayer, Loos, JPC 98 , 5244 (1994) Fradera, Austen, Bader JPCA 103 , 304 (1999) Matito, Sol` a, Salvador, Duran Faraday Discuss. 135 , 325 (2007) Eduard Matito MACMoM: New Tools 51 / 87

  50. Multicenter Bonding Accounts for electron-sharing between n centers (atoms). It is related to the n -order central moment of the electron population. � n � �� ˆ D ( A 1 , · · · , A n ) ∼ N − N A 1 , ··· , A n Giambiagi, de Giambiagi, Mundim, Struc. Chem. 1 , 423 (1990) Ponec, Mayer, JPCA 101 , 1738 (1997) Bochicchio, Ponec, Torre, Lain, TCA 105 , 292 (2001) Eduard Matito MACMoM: New Tools 52 / 87

  51. nc -ESI: What is it good for? Eduard Matito MACMoM: New Tools 53 / 87

  52. Agostic Bonds Feixas, Matito, Maseras, Poater, Sol` a, in preparation Eduard Matito MACMoM: New Tools 54 / 87

  53. Conjugation and Hyperconjugation effects Eduard Matito MACMoM: New Tools 55 / 87

  54. Aromaticity Let A = { A 1 , A 2 ,..., A n } represent a ring. � I ring ( A ) = S i 1 i 2 ( A 1 ) S i 2 i 3 ( A 2 ) ... S i n i 1 ( A n ) i 1 , i 2 ,..., i n � MCI ( A ) = I ring ( A ) P ( A ) The n th root of these quantities correlates with the TREPE. Giambiagi, et al. , PCCP 2 , 3381 (2000); Bultinck, et al. JPOC 18 , 706 (2005) Eduard Matito MACMoM: New Tools 56 / 87

  55. Multicenter Indices: Formulae � � δ ( A , B ) = − 2 d 1 d 2 γ ( 1 , 2 ) = Cov ( N ( A ) , N ( B )) A B � � � δ ( A , B , C ) = 2 d 1 d 2 d 3 γ ( 1 , 2 , 3 ) A B C ( − 2) n − 1 � � � δ ( A 1 , A 2 , . . . , A n ) = · · · d 1 d 2 . . . d n γ ( 1 , 2 , . . . , n ) ( n − 1)! A 1 A 2 A n Functions that upon integration give the above ESIs: γ ( 1 , 2 ) = ρ xc ( 1 , 2 ) = ρ ( 1 , 2 ) − ρ ( 1 ) ρ ( 2 ) ρ ( 1 , 2 , 3 ) − ρ ( 1 ) ρ ( 2 ) ρ ( 3 ) − ˆ γ ( 1 , 2 , 3 ) = P 1 , 2 , 3 ( ρ xc ( 1 , 2 ) ρ ( 3 )) γ ( 1 , 2 , . . . , n ) = � (ˆ ρ 1 − ¯ ρ 1 )(ˆ ρ 2 − ¯ ρ 2 ) · · · (ˆ ρ n − ¯ ρ n ) � they depend on the n -order density ( n -density) . Mart´ ın Pend´ as, Francisco, Blanco JCP 127 144103 (2007) Eduard Matito MACMoM: New Tools 57 / 87

  56. Computational Details ESI-3D : http://ematito.webs.com Eduard Matito MACMoM: New Tools 58 / 87

  57. OXIDATION STATE Eduard Matito MACMoM: New Tools 59 / 87

  58. Oxidation state (oxidation number) DEFINITIONS : IUPAC (2018, formal): OS of an atom is the charge of this atom after ionic approximation of its heteronuclear bonds IUPAC (old, formal): Charge of TM after removing the L and the electrons sharing with it. Physical or Spectroscopic : Charge of TM that comes from d n and can be measured spectroscopically (e.g. M¨ ossbauer). J¨ orgensen, In Oxidation Numbers and Oxidation States ; Springer; Heildeberg, 1969 Eduard Matito MACMoM: New Tools 60 / 87

  59. Oxidation state IUPAC (formal): Charge of TM after removing the L and the electrons sharing with it. Physical or Spectroscopic : Charge of TM that comes from d n and can be measured spectroscopically (e.g. M¨ ossbauer). Useful references: http://www.edu.upmc.fr/chimie/mc741/PDFs/bond.pdf http://www.chem.umn.edu/groups/harned/classes/8322/lectures/5ElectronCounting.pdf Eduard Matito MACMoM: New Tools 61 / 87

  60. Oxidation state: A computational approach There are many methods to calculate the OS: Bond Valence Sum (BVS) method. Empirical method based on M-L distances ( R i ) and reference values ( R 0 , b =0.37˚ A). � R i − R 0 � � V = b i From atomic population analysis. Spin densities → atomic configuration → OS Localization methods (e.g. LOBA or EOS). http://www.ccp14.ac.uk/solution/bond valence/index.html Thom, Sundstrom, Head-Gordon Phys. Chem. Chem. Phys. 11, 11297 ( 2009 ) Ramos-Cordoba, Postils, Salvador J. Comput. Theor. Chem. 11, 1501 ( 2015 ) Eduard Matito MACMoM: New Tools 62 / 87

  61. Ligand Field Theory. O h complexes Eduard Matito MACMoM: New Tools 63 / 87

  62. A test set of TM complexes To evaluate the performance of OS methods the following test set of O h complexes is used: V II [ VCl 6 ] 4 − [ V ( H 2 O ) 6 ] 2+ [ V ( CN ) 6 ] 4 − [ V ( CO ) 6 ] 2+ Mn II [ MnCl 6 ] 4 − [ Mn ( H 2 O ) 6 ] 2+ [ Mn ( CN ) 6 ] 4 − [ Mn ( CO ) 6 ] 2+ Mn III [ MnCl 6 ] 3 − [ Mn ( H 2 O ) 6 ] 3+ [ Mn ( CN ) 6 ] 3 − [ Mn ( CO ) 6 ] 3+ [ FeCl 6 ] 4 − [ Fe ( H 2 O ) 6 ] 2+ [ Fe ( CN ) 6 ] 4 − [ Fe ( CO ) 6 ] 2+ Fe II [ FeCl 6 ] 3 − [ Fe ( H 2 O ) 6 ] 3+ [ Fe ( CN ) 6 ] 3 − [ Fe ( CO ) 6 ] 3+ Fe III [ Ni ( H 2 O ) 6 ] 2+ [ Ni ( CN ) 6 ] 4 − [ Ni ( CO ) 6 ] 2+ Ni II [ NiCl 6 ] 4 − [ ZnCl 6 ] 4 − [ Zn ( H 2 O ) 6 ] 2+ [ Zn ( CN ) 6 ] 4 − [ Zn ( CO ) 6 ] 2+ Zn II Eduard Matito MACMoM: New Tools 64 / 87

  63. OS from atomic populations Mulliken charges TFVC charges Cl − H 2 O HS H 2 O LS CN − CO Cl − H 2 O HS H 2 O LS CN − CO V II 0.98 1.12 0.05 0.64 1.60 1.76 - 1.60 1.64 Mn II 1.10 1.24 1.18 0.10 0.64 1.36 1.64 1.70 1.53 1.53 Mn III 0.93 1.58 1.52 0.35 0.80 1.46 2.05 2.09 1.58 1.67 Fe II 0.86 1.22 1.15 0.01 0.51 1.27 1.63 1.77 1.46 1.44 Fe III 0.99 1.64 1.48 0.24 0.66 1.44 2.06 1.98 1.49 1.58 Ni II 0.99 1.08 -0.19 0.31 1.27 - 1.59 1.24 1.30 Zn II 1.02 1.06 -0.03 0.52 1.25 - 1.45 1.15 1.19 Mulliken population fails in all cases. TFVC gets more than 50% wrong. Ramos-Cordoba, Postils, Salvador J. Comput. Theor. Chem. 11, 1501 ( 2015 ) Eduard Matito MACMoM: New Tools 65 / 87

  64. OS from spin densities Mulliken populations TFVC populations Cl − H 2 O HS H 2 O LS CN − CO Cl − H 2 O HS H 2 O LS CN − CO V II 3.06 2.99 2.84 2.79 2.90 2.71 - 2.52 2.44 Mn II 4.96 4.88 1.01 1.09 1.06 4.86 4.66 0.95 1.01 0.98 Mn III 4.25 3.85 1.97 2.11 2.16 4.07 3.65 1.84 1.96 2.00 Fe II 3.86 3.86 0.00 0.00 0.00 3.72 3.71 0.00 0.00 0.00 Fe III 4.27 4.43 0.89 1.08 1.11 4.17 4.28 0.86 1.01 1.03 Ni II 1.87 1.84 1.69 1.66 1.84 - 1.77 1.66 1.63 Zn II 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 The spin population suggests the atomic configuration of the TM. From it we can deduce the OS. It only makes sense for open-shell calculations. Ramos-Cordoba, Postils, Salvador J. Comput. Theor. Chem. 11, 1501 ( 2015 ) Eduard Matito MACMoM: New Tools 66 / 87

  65. Effective Oxidation State φ A w A ( 1 ) φ MO i ( 1 ) = ( 1 ) i � Q A φ A i ( 1 ) φ A = j ( 1 ) d 1 ij Tr Q A = N A Q A L A L A Λ A = EOS A = I A − Z A w A (atomic weights) define the atom, L contains the effective AOs (EF- FAOs) and Λ the occupancies. N A is the net atomic population. One or zero electrons are assigned to each orbital according to its occupa- tion. As a result, an integer number of electrons ( I A ) is assigned to each atom. EOS reproduce the correct OS for all the complexes in the test set. Ramos-Cordoba, Postils, Salvador J. Comput. Theor. Chem. 11, 1501 ( 2015 ) Eduard Matito MACMoM: New Tools 67 / 87

  66. OS: Calculations Charges and spin population can be obtained from Gaussian (Mulliken) or real-space partitioning program (QTAIM, Becke-rho, etc.) EOS can be obtained from APOST-3D program. We need to repeat the steps in the slide Computational Details: Fuzzy and Becke-rho . Only one difference: edit yourfile.inp and add the keyword UEFFAO . Recommendations: Define a fragment for each ligand. Add they keyword DOFRAG and define the fragments under the label ## FRAGMENTS #### using the same method than in ESI-3D manual. The best working DFT functionals: UB3LYP and M062X. Eduard Matito MACMoM: New Tools 68 / 87

  67. AROMATICITY Eduard Matito MACMoM: New Tools 69 / 87

  68. Aromaticity Timeline Eduard Matito MACMoM: New Tools 70 / 87

  69. Aromaticity Timeline Eduard Matito MACMoM: New Tools 71 / 87

  70. Aromaticity Timeline Eduard Matito MACMoM: New Tools 72 / 87

  71. What is Aromaticity? Unhopefully, aromaticity remains an ill − defined concept . Unlike other similar quantities like bond ionicity or bond order aromaticity refers to not one, but several properties not necessarily mutually related. However, in practice, organic chemists still use this concept to elucidate phenomena such as chemical stability/reactivity, bond length equalization/alternation, among others. Saying that aromaticity is a multidimensional phenomena (an accepted fact), sometimes hinders the understanding of where certain aromaticity indices are failing. Two important goals in aromaticity are the study of the domain of application of each aromaticity index , as well as the definition of universal low-cost aromaticity measure. Eduard Matito MACMoM: New Tools 73 / 87

  72. Aromaticity descriptors Energetic : Isodesmotic reactions Magnetic : Ring currents, NICS and Λ Geometrical : HOMA Electronic : FLU, PDI, Multicenter Eduard Matito MACMoM: New Tools 74 / 87

  73. The HOMA The harmonic oscilator model of aromaticity (HOMA). Only relies on geometrical data. Easy to compute: n 1 − 257 . 71 � ( R opt − R i ) 2 HOMA = n i � n � 1 − 257 . 71 � 2 + � 2 � � � = R opt − R R i − R n i = 1 − (EN + GEO) R opt available: C-C, C-N, C-O, C-P, C-S, N-N, N-O HOMA can be computed with ESI-3D using the keyword $GEOMETRY Eduard Matito MACMoM: New Tools 75 / 87

Recommend


More recommend