new paths toward the supernova rate measurements
play

New Paths toward the Supernova Rate Measurements M. Della Valle + - PowerPoint PPT Presentation

New Paths toward the Supernova Rate Measurements M. Della Valle + P. Rosati, M. Paolillo, INAF-Napoli D. De Martino ICRANet-Pescara Wide-Field X-ray Telescope (Murray et al. 2010) Vulcano 2010 2 Why SN rates ? Explosive Death of


  1. New Paths toward the Supernova Rate Measurements M. Della Valle + P. Rosati, M. Paolillo, INAF-Napoli D. De Martino ICRANet-Pescara

  2. Wide-Field X-ray Telescope (Murray et al. 2010) Vulcano 2010 2

  3. Why SN rates ? • Explosive Death of Stars Evolution of stellar population • Metal Enrichment and galaxies; GRBs • Energy Injection • Distance Indicators Cosmology • Tracers of high-z Stellar Populations GRBs • Bright Background Sources ISM-IGM Studies • Bright Echoes 3-D Structure of CSM • Cosmic Rays • NS & BHs Core-Collapse SNe • Neutrinos • GWs Vulcano 2010 3

  4. Outline • Classical SN searches • X-ray from CC-SNe  Ejecta vs- CSM Interaction  Shock Break-out/failed GRB  GRB-SNe • X-ray and SNe-Ia • Exotics objects (Dark SNe, LBV-SNe, Monsters….) • Conclusions Vulcano 2010 4

  5. How to search SN 1998dh Compare images taken at different epochs • few days < time interval < 1-2 month • 14 < limiting magnitude < 24 • 0.01 < target redshift < 1 • 5 arcmin < field of view < 1 deg • B-V < band < R-I Vulcano 2010

  6. How to compute rates 1. The observing log: epoch, limiting magnitude 2. Target apparent light curve: SN type, target distance 3. Galaxy sample: distance, type, inclination ……. observing log JAN FEB MARAPR MAYJUN JUL AGO SEP NOV DEC Vulcano 2010

  7. Compute SN rate SN SN SN G m ( t ) M ( t ) ( z ) K ( t ) A = + µ + + i , V B 0 i BV 0 V galactic SN light curve galaxy B to V extinction t 0 = t /(1+z) in B absolute distance K-correction magnitude modulus SN CT L ( m ) ( m ) d m = � � � i i i galaxy time SN detection SN N luminosity stays at efficiency SN r ( 1 z ) = + m-m +dm i N SN CT � i i Vulcano 2010

  8. Local SN Rate 5 historical historical SN searches SN searches 5 Asiago (Italy) Photographic Cappellaro et al. 1993 A&A 268, 472 Crimea (Russia) Photographic Tsvetkov 1983 SA 27, 22 O.C.A. (France) Photographic Pollas 1994 Calan/Tololo (Chile) Photographic Hamuy et al. 1993 AJ 106, 2392 Evans (Australia) Visual Evans 1997 PASA 14, 204 RC3 galaxies surveyed 9346 SNe discovered 137 Total control time ~ 25000 yr Vulcano 2010

  9. Local Supernova Rates SNe per century per 10 10 K-band L  SNe per century per 10 10 M  Cappellaro et al. 1999 Mannucci et al. 2005 Vulcano 2010

  10. The Lick Observatory Supernova Search The robotic Lick Observatory Supernova Search (LOSS), conducted with the the 0.76-m Katzman Automatic Imaging Telescope (KAIT) equipped with a CCD imaging camera, has discovered over 400 supernovae in the past 7 years. This makes KAIT the world's most successful search engine for nearby supernovae. The LOSS sample has about 14,000 galaxies, roughly half of which are available at any given season, and these are imaged with temporal frequencies that typically range from 2 to 10 days.

  11. Vulcano 2010 11

  12. CCD (local) SN Rates are similar to photographic (local) SN rates Vulcano 2010 12

  13. Surveys for Transients • PANSTARRS • The SDSS Supernova Survey • The ESSENCE Supernova Survey • SNLS SuperNova Legacy Survey • GOODS/HST TRANSIENT SEARCH (2004)

  14. SN search target reference difference - = SN 2000fc type Ia z = 0.42 V=22.4 IAUC7537 Vulcano 2010

  15. Panoramic Survey Telescope and Rapid Response System 1 • 1.8m telescope on Haleakala (Maui) • 1.4 gigapixel camera (GPC1) • 40x40 cm focal plane • 7 sq. deg. FOV, 0”.26 pixels • 8x8 chips, 8x8 cells per chip, 584x591 pixels I.e., an “array of arrays”

  16. SN Surveys • PANSTARRS • The SDSS Supernova Survey • The ESSENCE Supernova Survey • SNLS SuperNova Legacy Survey • GOODS/HST TRANSIENT SEARCH (2004) Extreme Large Telescope (160 nights) SNe (ground/HST) SNe Ia SNe II SNe Pop III Della Valle et al. 2005

  17. X-ray from SNe X-ray from interaction between SN ejecta and CSM (Soderberg et al. 2010) X-ray from SN Shock Break-out (and/or failed GRB) (Rabinak & Waxman 2010) X-ray from GRB-SNe (Bufano et al. 2010) X-ray from accretion on massive WDs (progenitors of SNe-Ia) (Gilfanov & Bogdan 2010) Vulcano 2010 17

  18. ISM CSM ~10 km/s RSG Reverse shock ~10 3 km/s; 10 7 K Forward shock ~ 10 4 km/s; 10 9 K Vulcano 2010 18

  19. Luminosity from Interaction: ejecta vs. CSM SN 1941C SN 1959D SN 1968D SN 1980K SN 1992ad SN 1993J SN 1994I SN 2004et SN 2006bp Vulcano 2010 19

  20. Distance Distribution Vulcano 2010 20

  21. Δ D ~ 10 Mpc & L ~ 5x10 38 erg/s; t ~ 10 7 s >> 4ks and 13ks and > 400 ks wide < 35 Mpc medium < 100 Mpc deep < 370 Mpc Vulcano 2010 21

  22. S N Ti me Ma chine N z Vulcano 2010 22

  23. 300 Ibc deg -2 yr -1 SNeIbc = 588 deg -2 yr -1 Vulcano 2010 23

  24. Ingredients SN rates from Cappellaro 1999 Correction for dust MDVP 2008 Cosmic SFR Hopkins & Beacom 2006 Vulcano 2010 24

  25. to check what we are doing…… ¯ ¯ Woosley & Bloom 2006 7.1 SNe per sec  3.3 SNe per sec 25

  26. Vulcano 2010 26

  27. Vulcano 2010 27

  28. OUTPUT • Indirect measurements of the SN rate • The X-ray luminosity is a function of the density of the CSM and ejecta velocities  properties of the CSM ( ρ , v)  mass loss of the progenitor stars of SNe (N.B. one of the most poorly constrained astrophysical quantity) Vulcano 2010 28

  29. X-ray from SNe X-ray from interaction between SN ejecta and CSM (Soderberg et al. 2010) X-ray from SN Shock Break-out (and/or failed GRB) (Rabinak & Waxman 2010) X-ray from GRB-SNe (Bufano et al. 2010) X-ray from accretion on massive WDs (progenitors of SNe-Ia) (Gilfanov & Bogdan 2010) Vulcano 2010 29

  30. In the Shock Break-out Arena The X-ray transient 080109/SN 2008D was serendipitously discovered by XRT (Berger & Soderberg 2008) while Swift was observing SN 2007uy Vulcano 2010 30

  31. Soderberg et al. 2008 Modjaz et al. 2008 Malesani et al. 2008 Chevalier & Fransson 2008 Xu et al. 2008 Li et al. 2008 Mazzali et al. 2008 Tanaka et al. 2008 Wang et al. 2008 Tanaka et al. 2009 Vulcano 2010 31

  32. Vulcano 2010 32

  33. The associated X- flare is a softer and fainter version of a GRB Vulcano 2010 33

  34. Vulcano 2010 34

  35. Supernova Shock Break-out Soderberg et al. 2008 Wang et al. 2008 Modjaz et al. 2008 Chevalier & Fransson 2008 Vulcano 2010 35

  36. Failed GRB SNe GRBs Mazzali et al. 2008; Tanaka et al. 2008, 2009 Li 2008; Xu et al. 2008 Vulcano 2010 36

  37. + Shock break-out The presence of : i) a dim peak in the optical lightcurve ii) the Energy budget ~ 10 46 erg is close to the predicted shock breakout radiation energy of “standard” SNe-Ibc (Matzner and McKee 1999) Vulcano 2010 37

  38. + Failed GRB i) SN 2008D is not a “standard” CC event (E K ) Vulcano 2010 38

  39. The theoretical modelling of the lightcurve and spectra of SN 2008D (Tanaka et al. 2008) finds a progenitor mass on the main sequence of about 25 M  and a kinetic energy of 6 x 10 51 erg.  SN 2008D has a significantly higher energy than “standard” CC-SNe ( ~10 51 erg) although less than GRB-HNe ( ~10 52 erg)  it is unlikely that all CC- SNe can produce a X-ray flash like 080109 Vulcano 2010 39

  40. + Failed GRB i) SN 2008D is not a “standard” CC event (E K ) ii) The similarities between 060218 and 080109 (lightcurves and both match the Amati relationship) suggest that this X-ray transient is a weaker version of a GRB event iii) the shock break-out theory predicts that the radiation spectrum is thermal-dominated. The observed one is a power-law (though see Wang et al. 2008 ) iv) Polarization Vulcano 2010 40

  41. X-Ray 080109 matches the Amati Relationship Vulcano 2010 41

  42. L peak ~ 3 x 10 43 erg/s i) L early ~3 x 10 41 erg/s Δ t ~ 10 3 s ii) L late ~ 10 40 erg/s, Δ t ~ 10 4 s D=31 Mpc f early ~ 2.6 x 10 -12 erg cm -2 s -1 f late ~ 8.6 x 10 -14 erg cm -2 s -1 tresh early ~ 10 -13 erg cm -2 s -1 tresh late ~ 8x10 -15 erg cm -2 s -1 D early < 160 Mpc  z < 0.04 Vulcano 2010 42 D late < 102 Mpc  z < 0.025

  43. Shock Break-out detections Cappellaro et al. 1999; Mannucci et al. 2005, Guetta & DV 2007 early late II = 3.51 x 10 -2 deg 2 yr -1 8.78 x 10 -3 deg -2 s -1 Ibc = 1.17 x 10 -2 deg 2 yr -1 2.93 x 10 -3 deg -2 s -1 Ia = 1.40 x 10 -2 deg 2 yr -1 3.51 x 10 -3 deg -2 s -1 HNe = 5.85 x 10 -4 deg 2 yr -1 1.47 x 10 -4 deg -2 s -1 II ? Ibc HNe wide 4268 (267) 1422 (90) 71 (5) medium 2464 (47) 821 (16) 41 (1) deep 1263 (32) 421 (11) 21 (0.5) Vulcano 2010 43

  44. OUTPUT • Clarify the conundrum Shock Break- out/Failed GRB  physics of the SN explosion + optical follow-up II Ibc HNe wide 4268 (267) 1422 (90) 71 (5) medium 2464 (47) 821 (16) 41 (1) deep 1263 (32) 421 (11) 21 (0.5) Vulcano 2010 44

  45. OUTPUT • Clarify the conundrum Shock Break- out/Failed GRB  physics of the SN explosion • Independent measurement of the CC-SN or HN rates (alternative method to “boring” optical/NIR SN surveys) Vulcano 2010 45

Recommend


More recommend