finding tutte paths in linear time
play

Finding Tutte Paths in Linear Time Philipp Kindermann Universit - PowerPoint PPT Presentation

Finding Tutte Paths in Linear Time Philipp Kindermann Universit at W urzburg joint work with Therese Biedl University of Waterloo Tutte Paths Planar graph G Tutte Paths X Planar graph G Tutte Paths X Planar graph G Y Tutte Paths X


  1. Tutte paths X Planar graph G Y T int -path: P – T SDR -path – visits all ext. vtcs – all comp. assigned to int. vtcs α Tutte path: Path from X to Y via α Every comp. attached to ≤ 3 vtcs of P Every outer comp. attached to 2 vtcs of P T SDR -path: Tutte path + System of Distinct Representatives: Injective assignment of comp. to attachment pts

  2. What is known? X Y [Tutte ’77] G 2-conn., X , Y , α on outer face ⇒ Tutte path [Thomassen ’83] α G 2-conn., X , Y , α on outer face ⇒ Tutte path [Sanders ’96] G 2-conn., X , Y , α on outer face ⇒ Tutte path T int [Gao, Richter & Yu ’95, ’06] . . . in O ( n ) time G 3-conn., X , Y , α on outer face ⇒ T SDR -path ( = Hamil. path) [Chiba & Nishizeki ’89] G 4-conn. ⇒ Tutte path in O ( n ) time [Schmid & Schmidt ’15] . . . in O ( n 2 ) time [Schmid & Schmidt ’18] . . . in O ( n 2 ) time

  3. What is known? X Y [Tutte ’77] G 2-conn., X , Y , α on outer face ⇒ Tutte path [Thomassen ’83] α G 2-conn., X , Y , α on outer face ⇒ Tutte path [Sanders ’96] G 2-conn., X , Y , α on outer face ⇒ Tutte path T int [Gao, Richter & Yu ’95, ’06] int. . . . in O ( n ) time G 3-conn., X , Y , α on outer face ⇒ T SDR -path ( = Hamil. path) [Chiba & Nishizeki ’89] G 4-conn. ⇒ Tutte path in O ( n ) time [Schmid & Schmidt ’15] . . . in O ( n 2 ) time [Schmid & Schmidt ’18] . . . in O ( n 2 ) time

  4. What is known? X Y [Tutte ’77] G 2-conn., X , Y , α on outer face ⇒ Tutte path [Thomassen ’83] α G 2-conn., X , Y , α on outer face ⇒ Tutte path [Sanders ’96] G 2-conn., X , Y , α on outer face ⇒ Tutte path T int [Gao, Richter & Yu ’95, ’06] int. . . . in O ( n ) time G 3-conn., X , Y , α on outer face ⇒ T SDR -path ( = Hamil. path) [Chiba & Nishizeki ’89] G 4-conn. ⇒ Tutte path in O ( n ) time [Schmid & Schmidt ’15] . . . in O ( n 2 ) time [Schmid & Schmidt ’18] . . . in O ( n 2 ) time

  5. Triangulated Graphs X Y α

  6. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time.

  7. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time.

  8. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time.

  9. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time.

  10. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  11. Triangulated Graphs k vertices X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  12. Triangulated Graphs k vertices X Y 2 k − 5 int. faces α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  13. Triangulated Graphs k vertices X Y 2 k − 5 int. faces k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  14. Triangulated Graphs k vertices X Y 2 k − 5 int. faces k − 3 int. vtcs k − 2 int. edges in P α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  15. Triangulated Graphs k vertices X Y 2 k − 5 int. faces k − 3 int. vtcs k − 2 int. edges in P α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  16. Triangulated Graphs k vertices X Y 2 k − 5 int. faces k − 3 int. vtcs k − 2 int. edges in P α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  17. Substitution Trick

  18. Substitution Trick

  19. Substitution Trick

  20. Substitution Trick X Y α

  21. Substitution Trick X Y α

  22. Substitution Trick X Y α

  23. Substitution Trick X Y α

  24. Substitution Trick

  25. Triangulated graphs k vertices X Y 2 k − 5 faces k − 2 edges in P − α k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  26. Triangulated graphs k vertices X Y 2 k − 5 faces k − 2 edges in P − α k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  27. Triangulated graphs k vertices X Y 2 k − 5 faces k − 2 edges in P − α k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  28. Triangulated graphs k vertices X Y 2 k − 5 faces k − 2 edges in P − α k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time. T int -

  29. Corner-3-connectivity int. 3-conn.

  30. Corner-3-connectivity int. 3-conn.

  31. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X α

  32. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X α

  33. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  34. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  35. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  36. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  37. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  38. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  39. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  40. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  41. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α G is corner-3-conn., X , Y , α on outer face ⇒ T int -path

  42. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α G is corner-3-conn., X , Y , α on outer face ⇒ T int -path

  43. Case 1: Outer Face is Triangle

  44. Case 1: Outer Face is Triangle Y X α

  45. Case 1: Outer Face is Triangle Y X α

  46. Case 1: Outer Face is Triangle Y X α

  47. Case 2: left-right cutting pair Y X α

  48. Case 2: left-right cutting pair Y X α

  49. Case 2: left-right cutting pair Y X G t G t α

  50. Case 2: left-right cutting pair Y X G t G t G b G b α

  51. Case 2: left-right cutting pair Y X G t G t G b G b α

  52. Case 2: left-right cutting pair Y X Y X G t G t α G b G b α

  53. Case 2: left-right cutting pair Y X Y X G t G t α G b G b α

  54. Case 2: left-right cutting pair Y X Y X G t G t α Y X G b G b α α

  55. Case 2: left-right cutting pair Y X Y X G t G t α Y X G b G b α α

  56. Case 2: left-right cutting pair Y X Y X G t G t α Y X G b G b α α

  57. Case 3: top-right cutting pair Y X α

  58. Case 3: top-right cutting pair Y X G b G b α

  59. Case 3: top-right cutting pair Y X G t G t G b G b α

  60. Case 3: top-right cutting pair Y X G t G t G b G b α

  61. Case 3: top-right cutting pair Y X G t G t Y X G b G b α α

  62. Case 3: top-right cutting pair Y X G t G t Y X G b G b α α

Recommend


More recommend