new cataly c routes to access
play

New Cataly*c Routes to Access Polymer Materials from CO 2 Dr - PowerPoint PPT Presentation

New Cataly*c Routes to Access Polymer Materials from CO 2 Dr Jennifer A. Garden Chris*na Miller Research Fellow 22 nd of February 2017 1 Polyme mers from m CO 2 2 Polycarbonate material applica*ons: Binders Packaging Coa,ngs 2 Polyme


  1. New Cataly*c Routes to Access Polymer Materials from CO 2 Dr Jennifer A. Garden Chris*na Miller Research Fellow 22 nd of February 2017 1

  2. Polyme mers from m CO 2 2 Polycarbonate material applica*ons: Binders Packaging Coa,ngs 2

  3. Polyme mers from m CO 2 2 Polyurethane material applica*ons: Footwear Automo,ve Construc,on Furniture Appliances 3

  4. Polyme mers from m CO 2 2 Conversion of waste CO 2 Life cycle analysis - energy reduc*on 20% CO 2 = 11 – 19% greenhouse gas reduc,on Williams et al, ACS Catal ., 2015 , 5 , 1581; von der Assen, Bardow, Green Chem ., 2014 , 16 , 3272 4

  5. Catalyst Developme ment salens β -diiminates macrocycles D. J. Darensbourg, Acc. Chem. Res. , 2004, 37 , 836–844; Chem. Rev. , 2007, 107 , 2388 C. K. Williams, J. Am. Chem. Soc., 2012 , 134 , 15676; G. W. Coates, Angew. Chem. Int. Chem. Sci. , 2012 , 3 , 1245; Ed. , 2002 , 41 , 2599; Rieger, PCT Int. Appl., 2013 , Chem. Commun. , 2014 , 51 , 4579 WO 2013034750 5

  6. Catalyst Developme ment macrocycles ANrac*ve Catalysts: Ac,ve at 1 bar CO 2 pressure • No co-catalyst needed • Robust (air, unpurified CHO) • Alterna,ng copolymer (˃99 % carbonate linkages) • Good copolymer selec,vity (˂5 % cyclic carbonate) • Low M n PCHC • C. K. Williams et al., JACS, 2012 2012, 134, 15676; Angew. Chem. Int. Ed ., 2009, 48 48, 931; Macromolecules, 2010 2010, 43, 2291; Chem. Commun., 2011 2011, 47, 212; WO 2013034750; WO 2009130470 6

  7. Mec MechanisKc hanisKc Under Understanding anding rate = k p [CHO][catalyst][CO 2 ] 0 Target 7 C. K. Williams, Macromolecules , 2010 , 43 , 2291; J. Am. Chem. Soc. , 2011 , 133 , 17395

  8. Ca Catalyst S Syn ynthes esis Synthe*c challenge: • Symmetrical ligand • Labile metals of similar proper,es • Successfully synthesised heterodinuclear catalyst • Homodinuclear analogues prepared J. A. Garden, P. K. Saini, C. K. Williams, J. Am. Chem. Soc. , 2015 , 137 , 15078; 8 J. A. Garden, C. K. Williams et al., patent applica,on number 1308978.4

  9. Ca Catalyst An Analysis J. A. Garden, P. K. Saini, C. K. Williams, J. Am. Chem. Soc., 2015 , 137 , 15078; 9 J. A. Garden, C. K. Williams et al., patent applica,on number 1308978.4

  10. Ca Catalyst An Analysis J. A. Garden, P. K. Saini, C. K. Williams, J. Am. Chem. Soc., 2015 , 137 , 15078; 10 J. A. Garden, C. K. Williams et al., patent applica,on number 1308978.4

  11. CO CO 2 /CHO Copolyme merisaKons Heterodinuclear catalyst: • 5 x faster than 1:1 ratio of homodinuclear • 2 x faster than homodinuclear Mg catalyst • Zn analogue - completely inactive X = TON 11

  12. CO 2 /CHO Copolyme CO merisaKons 12 Catalyst TON TOF (h -1 ) CO 2 (%) M n [Ð] MgZn 344 34 >99 3100 [1.14] 1:1 Mg 2 :Zn 2 72 7 >99 < 500 Mg 2 151 15 >99 840 [1.13] Zn 2 0 0 0 - Reac,on condi,ons: 10 h, 80 o C, cat. loading 0.1 mol% vs CHO, 1 bar 12

  13. CO 2 /CHO Copolyme CO merisaKons 13 Catalyst TON TOF (h -1 ) CO 2 (%) M n [Ð] MgZn* 3118 624 >99 18090 [1.05], 7270 [1.10] 1:1 Mg 2 :Zn 2 72 7 >99 < 500 Mg 2 151 15 >99 840 [1.13] Zn 2 0 0 0 - *Reac,on condi,ons: 5 h, 120 o C, cat. loading 0.01 mol% vs CHO, 50 bar TOF = 21 h -1 TOF = 210 h -1 Nozaki et al., Sugimoto, Kuroda, Macromolecules, Macromolecules, 2009 , 42 , 6972 2008 , 41 , 312 TOF = 1300 h -1 TOF = 107 h -1 Darensbourg et al., Williams et al., Inorg. Chem., Chem. Commun., 2007 , 46 , 5474 2011 , 47 , 212 13

  14. PA/CHO Copolyme merisaKons 14 40 x reac*vity enhancement 1:1 ra,o of Mg 2 :Zn 2 + 14

  15. Titanium m systems ms Titanium – akrac,ve metal for catalysis • Abundant • Inexpensive • Non-toxic High ac,vity catalysts for olefin polymerisa,on T. J. Marks, J. Am. Chem. Soc. , 2013 , 135 , 8830; J. Am. Chem. Soc. , 2014 , 136 , 10460 Recently applied to CO 2 /epoxide copolymerisa,on K. Nozaki, J. Am. Chem. Soc. , 2011 , 133 , 10720 15

  16. Heterome metallic Titanium m Catalysts • Ac,ve at 1 bar CO 2 pressure • No co-catalyst required • α-propoxide, ω-hydroxide end-capped polymers 60 Conversion (%) 50 40 homometallic 30 analogues are inac*ve 20 10 0 Ti Zn TiZn 16 J. A. Garden, A. J. P. White, C. K. Williams, Dalton Trans ., 2017 , DOI: 10.1039/C6DT04193K

  17. Con Concl clusion ons Development of new heterobimetallic catalysts • High ac,vity and selec,vity • Successful within CO 2 /epoxide copolymerisa,on • Outperform homometallic analogues • 17

  18. Acknowledgeme ments Funding Academics and Colleagues Prof. Charloke Williams • Dr Andrew J. P. White • Dr Charles Romain • Dr Prabhjot Saini • All Williams group members • Collaborators Thank you for listening! 18

Recommend


More recommend