new and improved spanning ratios for yao graphs
play

New and Improved Spanning Ratios for Yao Graphs Luis Barba 12 - PowerPoint PPT Presentation

New and Improved Spanning Ratios for Yao Graphs Luis Barba 12 Prosenjit Bose 1 Mirela Damian 3 Rolf Fagerberg 4 Wah Loon Keng 5 Joseph ORourke 6 e van Renssen 1 Andr Perouz Taslakian 7 Sander Verdonschot 1 Ge Xia 5 1 Carleton University 2


  1. New and Improved Spanning Ratios for Yao Graphs Luis Barba 12 Prosenjit Bose 1 Mirela Damian 3 Rolf Fagerberg 4 Wah Loon Keng 5 Joseph O’Rourke 6 e van Renssen 1 Andr´ Perouz Taslakian 7 Sander Verdonschot 1 Ge Xia 5 1 Carleton University 2 Universit´ e Libre de Bruxelles 3 Villanova University 4 University of Southern Denmark 5 Lafayette College 6 Smith College 7 American University of Armenia 30th Annual Symposium on Computational Geometry Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 1 / 15

  2. Yao-graphs Partition plane into k cones Add edge to closest vertex in each cone Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 2 / 15

  3. Geometric Spanners Graphs with short detours between vertices For every u and w , there is a path with length ≤ t · | uw | Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 3 / 15

  4. Previous Work k > 8 (1 + ε ) (Alth¨ ofer et al. , 1993) 1 k > 8 (Bose et al. , 2004) cos θ − sin θ 1 k > 6 (Bose et al. , 2010) 1 − 2 sin θ 2 Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 4 / 15

  5. Previous Work k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k ≥ 5 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 ?? ?? Y 5 Y 4 ?? ?? Y 3 Y 2 ?? Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 5 / 15

  6. Previous Work k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k ≥ 5 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 ?? ?? Y 5 Y 4 ?? × (El Molla, 2009) Y 3 × Y 2 (El Molla, 2009) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 5 / 15

  7. Previous Work k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k ≥ 5 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 ?? ?? Y 5 Y 4 663 (Bose et al. , 2012) × (El Molla, 2009) Y 3 × Y 2 (El Molla, 2009) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 5 / 15

  8. Previous Work k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k ≥ 5 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 17.7 (Damian & Raudonis, 2012) ?? Y 5 Y 4 663 (Bose et al. , 2012) × (El Molla, 2009) Y 3 × Y 2 (El Molla, 2009) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 5 / 15

  9. Our Results k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k > 3 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 17.7 (Damian & Raudonis, 2012) ?? Y 5 Y 4 663 (Bose et al. , 2012) × (El Molla, 2009) Y 3 × Y 2 (El Molla, 2009) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 6 / 15

  10. Our Results k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k > 3 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 17.7 (Damian & Raudonis, 2012) 10.9 Y 5 Y 4 663 (Bose et al. , 2012) × (El Molla, 2009) Y 3 × Y 2 (El Molla, 2009) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 6 / 15

  11. Our Results k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k > 3 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 17.7 (Damian & Raudonis, 2012) 10.9 3.74 Y 5 Y 4 663 (Bose et al. , 2012) × (El Molla, 2009) Y 3 × Y 2 (El Molla, 2009) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 6 / 15

  12. Our Results k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k > 3 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 17.7 5.8 (Damian & Raudonis, 2012) 10.9 3.74 Y 5 Y 4 663 (Bose et al. , 2012) × (El Molla, 2009) Y 3 × Y 2 (El Molla, 2009) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 6 / 15

  13. Odd Yao graphs Basic lemma (used for Yao graphs with k > 6) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 7 / 15

  14. Odd Yao graphs Basic lemma (used for Yao graphs with k > 6) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 7 / 15

  15. Odd Yao graphs Basic lemma (used for Yao graphs with k > 6) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 7 / 15

  16. Odd Yao graphs Even number of cones: Increasing one angle also increases the other Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 7 / 15

  17. Odd Yao graphs Even number of cones: Increasing one angle also increases the other Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 7 / 15

  18. Odd Yao graphs Odd number of cones: Increasing one angle decreases the other Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 7 / 15

  19. Odd Yao graphs Odd number of cones: Worst case occurs for 3 θ/ 4 Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 7 / 15

  20. Our Results k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k > 3 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 17.7 (Damian & Raudonis, 2012) 10.9 Y 5 Y 4 663 (Bose et al. , 2012) × (El Molla, 2009) Y 3 × Y 2 (El Molla, 2009) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 8 / 15

  21. Our Results First constant upper bound for Y 5 ⇒ Y k is a constant spanner iff k > 3 Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 9 / 15

  22. Our Results First constant upper bound for Y 5 ⇒ Y k is a constant spanner iff k > 3 Can we do better for Y 5 ? Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 9 / 15

  23. Our Results First constant upper bound for Y 5 ⇒ Y k is a constant spanner iff k > 3 Can we do better for Y 5 ? Always apply basic lemma Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 9 / 15

  24. Our Results First constant upper bound for Y 5 ⇒ Y k is a constant spanner iff k > 3 Can we do better for Y 5 ? Always Strategically apply basic lemma Handle remaining cases Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 9 / 15

  25. Improvements for Y 5 What if we only apply the lemma for small angles? Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  26. Improvements for Y 5 If the edge is very short, we’re still okay Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  27. Improvements for Y 5 Case 1: Both edges are long and they cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  28. Improvements for Y 5 Case 1: Both edges are long and they cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  29. Improvements for Y 5 Case 1: Both edges are long and they cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  30. Improvements for Y 5 Case 2: Both edges are long and do not cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  31. Improvements for Y 5 Case 2: Both edges are long and do not cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  32. Improvements for Y 5 Case 2: Both edges are long and do not cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  33. Improvements for Y 5 Case 2: Both edges are long and do not cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  34. Improvements for Y 5 Case 2: Both edges are long and do not cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  35. Improvements for Y 5 Case 2: Both edges are long and do not cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  36. Improvements for Y 5 Case 2: Both edges are long and do not cross Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 10 / 15

  37. Our Results k > 6 1 / (1 − 2 sin( θ/ 2)) (Bose et al. , 2010) k > 3 and odd 1 / (1 − 2 sin(3 θ/ 8)) Y 6 17.7 (Damian & Raudonis, 2012) 10.9 3.74 Y 5 Y 4 663 (Bose et al. , 2012) × (El Molla, 2009) Y 3 × Y 2 (El Molla, 2009) Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 11 / 15

  38. Spanning ratio of Y 6 Same general idea: Strategically apply basic lemma Handle remaining cases Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 12 / 15

  39. Spanning ratio of Y 6 Split cone into center and margins Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 13 / 15

  40. Spanning ratio of Y 6 Destination in center → Apply basic lemma Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 13 / 15

  41. Spanning ratio of Y 6 Closest in center → Apply basic lemma Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 13 / 15

  42. Spanning ratio of Y 6 Closest in center → Apply basic lemma Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 13 / 15

  43. Spanning ratio of Y 6 Look from the other side Sander Verdonschot (Carleton University) Spanning Ratios for Yao Graphs SoCG 2014 13 / 15

Recommend


More recommend