neutrons mirror symmetry and new interactions stefan
play

Neutrons, Mirror Symmetry and New Interactions Stefan Baessler 1. - PowerPoint PPT Presentation

Neutrons, Mirror Symmetry and New Interactions Stefan Baessler 1. Production of Low Energy Neutrons 2. Experiments with Low Energy Neutrons: The search for the origin of Parity Violation Spectroscopy of gravitationally bound quantum


  1. Neutrons, Mirror Symmetry and New Interactions Stefan Baessler 1. Production of Low Energy Neutrons 2. Experiments with Low Energy Neutrons: • The search for the origin of Parity Violation • Spectroscopy of gravitationally bound quantum states

  2. The Spallation Neutron Source SNS in Oak Ridge, TN Linear H - accelerator Accumulator ring (buncher) Target Target Guide Hall

  3. Usage of neutrons @ SNS 7 - Engineering 11A - Powder 9 – Diffractometer Diffractometer VISION IDT CFI Funded Commission 2007 Commission 2008 6 - SANS 12 - Single Crystal Diffractometer Commission 2007 Commission 2009 5 - Cold Neutron 13 - Fundamental Chopper Physics Beamline Spectrometer Commission 2008 Commission 2007 4B - Liquids Reflectometer 14B - Hybrid Commission 2006 Spectrometer Commission 2011 4A - Magnetism Reflectometer Commission 2006 15 – Spin Echo 3 - High Pressure 17 - High Resolution Diffractometer Chopper Spectrometer Commission 2008 18 - Wide Angle Commission 2008 Chopper Spectrometer 1B - Disordered Mat’ls 2 - Backscattering Commission 2007 Commission 2010 Spectrometer Commission 2006

  4. Table of Contents 1. Production of Low Energy Neutrons 2. Experiments with Low Energy Neutrons: • The search for the origin of Parity Violation • Spectroscopy of gravitationally bound quantum states e - p + ν n e

  5. Parity Violation in Nature Mechanics: Parity violation by convention Pedals of a bicycle: Parity is conserved

  6. Parity Violation in (Bio)chemistry Problem: chemical Chemistry / biology: properties of enantiomeres mostly identical, still we Parity of in amino acids have preferred chirality for sugars and amino acids in biological systems. Why? Measurement of optical activity

  7. The Beta Decay Hamiltonian � e - I � Parity Violation found by Wu et al, 1956 I ≠ 60 Co Fermi’s golden rule: π 2 2 → = � ρ w f H i 60 Co Decay probability i f weak e - G V = ⋅ µ + λ µ − − + H p n e γ γ γ γ γ γ ν 5 F ud 1 h.c. e � � weak 5 2 2 Left –Right-Symmetric model: p = (udu) p = (udu) u e - u e - ν e ± W L g V , g A ± ν e W R g V , g A d d n = (ddu) n = (ddu) forbidden at low energy, due to high m (W R )

  8. Idea of the cos θ e ν spectrometer Nab @ SNS   p ∝ + θ dw a E e   1 cos e ν   e e - θ p e ν n ν e Kinematics: ν = − E E E • Energy Conservation: e,max e • Momentum Conservation = + + θ p p p p p 2 2 2 2 cos ν ν ν e p e e

  9. The cos θ e ν spectrometer Nab @ SNS Segmented Si detector Neutron beam 30 kV TOF region decay transition volume region acceleration region

  10. Possible future setup of Nab Detector Electrons Beam Stop +Protons Neutrons Beam Line Decay volume

  11. The Nab collaboration R. Alarcon a , L.P. Alonzi b , S.B. b (Experiment Manager), S. Balascuta a , J.D. Bowman c (Co- Spokesmen), M.A. Bychkov b , J. Byrne d , J.R. Calarco e , T.V. Cianciolo c , C. Crawford f , E. Frlež b , M.T. Gericke g , F. Glück h , G.L. Greene i , R.K. Grzywacz i , V. Gudkov j , F.W. Hersman e , A. Klein k , J. Martin l , S. Page g , A. Palladino b , S.I. Penttilä c (On-site Manager), D. Po č ani ć c (Co-Spokesmen), K.P. Rykaczewski c , W.S. Wilburn k , A.Young m a Department of Physics, Arizona State University, Tempe, AZ 85287-1504 b Department of Physics, University of Virginia, Charlottesville, VA 22904-4714 c Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 d Department of Physics and Astronomy, University of Sussex, Brighton BN19RH, UK d Department of Physics and Astronomy, University of Sussex, Brighton BN19RH, UK e Department of Physics, University of New Hampshire, Durham, NH 03824 f Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 g Department of Physics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada h IEKP, Universität Karlsruhe (TH), Kaiserstraße 12, 76131 Karlsruhe, Germany i Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 j Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 k Los Alamos National Laboratory, Los Alamos, NM 87545 l Department of Physics, University of Winnipeg, Winnipeg, Manitoba R3B2E9, Canada m Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 Tasks of UVa group: Spectrometer design, Superconducting magnet, Proton source

  12. Table of Contents 1. Production of Low Energy Neutrons 2. Experiments with Low Energy Neutrons: • The search for the origin of Parity Violation • Spectroscopy of gravitationally bound quantum states

  13. The neutron source of the ILL / Grenoble The neutron source of the ILL Grenoble/France European Synchrotron Radiation Facility Institut Laue-Langevin (neutrons)

  14. Examples: Bound States Electromagnetic Bound State Gravitational Bound State electron Strong Interaction Bound States proton Nucleus ( 12 C) neutron d d u

  15. Gravitational Bound states – The idea Ψ 4 4 E 4 = 4.08 peV Ψ 3 g neutron neutron E 3 = 3.32 peV 3 Energy [peV] Ψ 2 E 2 = 2.46 peV 2 Ψ 1 E 1 = 1.41 peV Absorber/Scatterer z > >   mgz mgz z 1 1 ; ; 0 0 = =  ∞ V  ; otherwise 0 0 10 20 30 40 Height [µm] Early proposals: •Neutrons: V.I. Lushikov (1977/78), A.I. Frank (1978) •Atoms: H. Wallis et al. (1992)

  16. 2002 2002年世界十大科技进展新闻揭晓 年世界十大科技进展新闻揭晓( (图 图) ) 2002 2002 年世界十大科技进展新闻揭晓 年世界十大科技进展新闻揭晓 ( ( 图 图 ) ) CCTV.com 消息(晚 间新闻) : 两院院士今天 还评出了 2002 年世界十大科技 进展新闻。 2002 年世界十大科技 进 展新 闻分别是: ������������������������������������������������������������������������������������������������������������������������������������������������������� 1 科学家首次大批量制造反物质并首次观察到反物质原子内 3 科学家 观测到引力场中的量子效应:一个国际合作的研究小组在 1 月 17 日 部结构:世界各地 9 个研究所、 39 名科学家的通力合作下,欧洲核 出版的英国《自然》 杂志上,报告了他们对于地球重力场量子化的观测结果。 子研究中心已成功制造出约 5 万个低能量状态的反氢原子,这是人 他 们让冷却到非常接近绝对零度的中子在重力场中运动,同时用一个探测器观 类首次在受控条件下大批量制造反物质,这对准确比较物质与反物 测中子的下落。结果他们发现,中子的下落过程不是连续的,而是从一个位置 “ 质的差别、解答宇宙构成等问题有重要意义。欧洲核子研究中心的 跳 ” 到了另外一个位置, 这一过程与理论的预测相符合,从而实际观测到了引力 一个国际科学家小组首次成功地对反物质原子的内部结构和物理特 场的量子效应。 场的量子效应。 性进行了研究,朝弄清物质与反物质的差别、进而验证物理学基本 理论迈出关键一步。 ������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������� 2 英、美、德等国科学家破 译老鼠基因组:来自英、美、德等国的 4 中、美、日科学家 发现核反应堆中微子消失现象: 12 月 6 日,日、美、中 上百位科学家 12 月 5 日在英国《自然》 杂志上联合宣布他们成功破译了 三国的科学家同 时宣布他们发现了核反应堆中微子消失的现象,这意味着反应 老鼠的基因 组。人类与老鼠共享着 80 %的 遗传物质和 99 %的基因,因 堆 产生的中微子发生了振荡,变成了另外一种没有被探测到的中微子,从而确 此了解老鼠非常有助于了解人 类自身。新的基因组草图显示,老鼠的 认了太阳中微子发生了振荡,并确定中微子振荡的关键参数。这是首次在人工 20 对染色体上共有约 25 亿个碱基对,与人类 23 对染色体上的 29 亿个碱 中微子源中 发现中微子消失。 基 对相当接近。 DNA 链上基因与基因之间的 “ 空白 ” 片断也非常相似。 两个物种的基因数目大 约都是 3 万个,其中 绝大部分相同,只有几百个 [… and 6 other discoveries ] 基因是某一物种独有的。

Recommend


More recommend