detection of neutrons part ii
play

Detection of Neutrons: Part II Ralf Nolte Table of Contents - PowerPoint PPT Presentation

Detection of Neutrons: Part II Ralf Nolte Table of Contents Introduction Neutrons in Science and Technology Interaction of Neutrons with Matter Neutron Detection General Properties of Detectors Detectors for Thermal and


  1. Detection of Neutrons: Part II Ralf Nolte

  2. Table of Contents • Introduction – Neutrons in Science and Technology – Interaction of Neutrons with Matter • Neutron Detection – General Properties of Detectors – Detectors for Thermal and Slow Neutrons – Detectors for Fast Neutrons • Recoil Detectors: Prop. Counters, Scintillation Detectors, Recoil Telescopes • (Fission) Ionization Chambers • Techniques for Neutron Measurements – Time-of-flight – Spectrometry – Spatial Neutron Distribution • Absolute Methods, Quality Assurance – Associated particle methods – Key comparison Seite 2 von 58

  3. Recoil Detectors: Proton Telescopes Seite 3 von 58

  4. Recoil Telescopes as Reference Instruments • Scintillation detector used as primary reference instrument? – Properties of the scintillators show variations: Light output, H/C ratio – Full angular distribution for n-p scattering required – Interference from 12 C(n,x) interactions – Detection efficiency difficult to calculate ‘accurately’ (1 -2% uncertainty)  Calibration required! • Way-out: Recoil Proton Telescopes (RPTs) – Only n-p scattering contributes – Restricted range of scattering angels  E cos  2 E p n p – ‘Localized’ response function – Efficiency determined by geometry, radiator mass and diff. cross section Detection efficiency small: e = 10 -4 - 10 -5 – – Energy range depends of radiator thickness Seite 4 von 58

  5. The Classical Low-Energy Telescope: T1 of PTB Prop. Counters P1 and P2 Los Alamos in-beam design: Two CO 2 prop. counters: D E • • Surface barrier detector: E • Radiator – source distance: 20-35 cm • 1 mm Ta aperture:  (20.98  0.01) mm • Energy range : n  1.2 MeV – 15 MeV using three radiators  up to 20 MeV with degrader foils • Single rates: < 10 4 s -1 • Coincidence rate: 0.5 – 2 s -1 P1  P2  SB • Coincidence resolution: 2 µs • Multi-parameter DAQ Si SB Diode Aperture Radiator Seite 5 von 58

  6. T1: Recoil Proton Spectra P2 - P1 SB P1 + P2 - SB recoil protons • D(d,n) 3 He, D 2 gas target, E d,0 = 7.11 MeV, < E n > = 10.02 MeV Seite 6 von 58

  7. T1: Analysis • Calculation of the efficiency: – (Semi)analytical integration – Monte Carlo simulation – Relativistic kinematics for CM → LAB! – Anisotropic source: D(d,n)         d E   np    np n A , E     p n d   p       A cos cos       e  1 2 d A d A     geo  1 2 2 2 E n = 8.4 MeV  d   d  1 2 A A 1 2   e  N n Y p geo H np • Main contributions to uncertainty – Counting statistics: u N / N = 1% - 2% u e / e = 1% – Efficiency: – Diff. n-p cross section: u A / A = 0.2% - 1% Seite 7 von 58

  8. RPT Design Exercise: 75 MeV Test of a proton recoil telescopes for TLABS neutron beam facility: • Neutron Source: nat Li (8 mm) + p (75 MeV): quasi-monoenergetic spectrum, < E n,0+1 > = 71.6 MeV (FWHM  3.2 MeV) Collimated beam (50  50 mm) 2 • Cu coll. + D E - E … which one made the race? D E 1 - D E 2 - E Seite 8 von 58

  9. RPT Design Exercise: Results Double stage RPT: Cu-coll. + D E - E Triple stage RPT: D E 1 - D E 2 - E D E 2 D E E E E E TOF TOF • Good particle discrimination with 500 µm Si-PIPS as D E detectors • Less neutron induced coupling with D E 1 - D E 2 - E scheme Seite 9 von 58

  10. Fast Neutrons: Ionization Chambers Seite 10 von 58

  11. Fission Ionization Chambers +HV U 0 electrons x Drift velocities: v = µ · E / p, v el >> v ion fission frag.  Ion-induced signal suppressed by r d time constant of the pre-amp. ions  Electron-induced signal depends on the location of the ionizing event fissile layer  • Electrical field: E U d 0   e d E    0 ff • Charge per unit track segment: q   W d r • Voltage change induced by drift along d x :  CU d U q E d x 0 R   e 1 d E r  • Integration along frag. track:       0 U ( 1 cos ) d r   C W d r d 0 Seite 11 von 58

  12. Simulated Pulse-Height Spectra FF energy loss in the fissile deposit Monte Carlo calculations: • ( A , Z ) of the fissioning system: multiple-chance fission! • Range data for U 3 O 8 and Ar/CH 4 • Model for the surface roughness: < r a > • FF distributions: Y ( E n , A ff , Z ff ) FF anisotropy: W (  CM ) = (1+ B· cos  cm )/2  • • Incomplete momentum transfer Seite 12 von 58

  13. Analytical Calculation of the Detection Efficiency Absorption of fragments in the fissile layer: W (  ) = (1+ B cos(  ))/2  t e      1 ... 0 . 94 0 . 99 f 2 R ff Higher order contributions: • Anisotropic fragment emission • Momentum transfer  R t Uncertainty: u e / e f ≈ 1% - 2% • depends very much on sample quality Ref.: G.W. Carlson, NIM 119 (1974) 97-100 Seite 13 von 58

  14. Fission Fragment Detection Efficiency • Background at small pulse heights 100 90 nat Pb-PPFC a decay of fissile nuclei – 80 E n = 145 MeV 70 – recoil nuclei from backing materials 60 fission fragments counts 50 • Extrapolation of fission events 40 light charged particles (normalized) into this region 30 20 – thickness and ‘roughness’ of deposits 10 0 – biasing scheme 0 20 40 60 80 100 120 140 160 180 200 pulse height / arb. units 300 238 U-PPFC 250 a particles 238 U-PPFC 200 counts per bin fission fragments 150 100 50 0 0 100 200 300 400 500 pulse height / arb. units Painted 238 U 3 O 8 layers Electro-sprayed 238 U 3 O 8 layers Seite 14 von 58

  15. 242 Pu Fission Chambers for Cross Section Measurements • 242 Pu layers produced by molecular plating (U. Mainz) – m Pu = 42 mg, 242 Pu: 99.9668 % eight layers: 116 m g/cm 2 – – A a = 6.17 MBq – R sf = 34 s -1 • Number of fissile atoms N Pu : – Spontaneous fission rate t 1/2 = (6.77 ± 0.07)  10 10 a – Narrow-geometry alpha counting • Fast pre- amp.’s : a pile-up! • Continuous P10 flow (nanofilters) Seite 15 von 58

  16. The Measurement of Neutron Energy Distributions: TOF Methods Seite 16 von 58

  17. TOF Spectrometry: Principles D t g n d • Neutron energy determined from a velocity measurement: d 1    g   g  2 v E ( 1 ) mc ,   2 t  1 v c • Energy resolution: 2 2 d d d d d     E v v t d  g  g       ( 1 ) ,     E v v t d Time and distance resolution contribute in same way:  express flight time d t by an equivalent distance d d eq Seite 17 von 58

  18. Measurement of TOF Distributions Quasi-monoenergetic source ‘White’ source • Start signal: neutron detector • Stop signal: beam pick-up • Inverted time scale: TOF = t stop – t start • Measured neutron flight time: t m = TOF g + d / c – TOF n NB: Measured flight time t m includes time spent in target and detector! Seite 18 von 58

  19. Width of TOF Peaks • Contributions to the width of TOF peaks : Beam: time spread of the beam pulse d t beam – d t src = d src / v – Source: beam transit time d E src = f kin ( E beam , E n )·(d E /d x )· d src energy-loss broadening f kin ( E n ,  )· d  kinematical broadening d t slow ≈ A / S s v slowing-down time d E spl = f kin ( E n ,  )· d  – Sample: kinematical spread d t det = d det / v – Detector: transit time multiple scattering spread d t ms 2   t ( E , l )     • Total TOF spread: d  d  j n, j j d 2 2 2 t t E   i n, j 2 E   n, j i j • Relative importance of time and energy broadening depends on the details of the setup: – Masses of projectiles and target nuclei: source and sample – Flight paths: source and sample Seite 19 von 58

  20. Time Response of Organic Scintillation Detectors • Multiple scattering affects time response: – Width of the main peak: flight time through det. 1 H(n,n) 1 H – Exponential tails for pancake-like detectors ( d >> l ) – Non-Gaussian time response: R ( E , t ) – Modeled with Monte Carlo codes 12 C(n,n) 12 C Calc. (NRESP7) Exp. time / 0.1 ns Seite 20 von 58

  21. Example: PTB TOF Spectrometer D(d,n) E n,0 = 10 MeV – d t beam = 1.6 ns – d E n,src = 106 keV – d src = 17 cm, d det = 12 m  d E n / E n = 1.4 % for E n,det = 2 MeV 1.8 % for E n,det = 10 MeV Seite 21 von 58

  22. Example: PTB TOF Spectrometer 51 V 12 C(n,n) 12 C CH 2 1 H(n,n) 1 H 12 C(n,n') 12 C* Separation of TOF peaks Kinematical broadening  Vanadium sample – Polyethylene (PE) sample  E n,0 = 10.21 MeV – Incident energy: E n,0 = 10.21 MeV – Scattering angle:  = 29.3 °   = 36.8 ° Seite 22 von 58

Recommend


More recommend