neutralino dark matter update neutralino dark matter
play

NeutralinoDarkMatter:update NeutralinoDarkMatter:update - PowerPoint PPT Presentation

NeutralinoDarkMatter:update NeutralinoDarkMatter:update ondirectandindirectdetection ondirectandindirectdetection StefanoScopel http://newton.kias.re.kr/~scopel Outline ofthetalk


  1. Neutralino�Dark�Matter:�update� Neutralino�Dark�Matter:�update� on�direct�and�indirect�detection on�direct�and�indirect�detection Stefano�Scopel http://newton.kias.re.kr/~scopel

  2. Outline of�the�talk of�the�talk Outline � gaugino�non�universality�&�neutralino�mass � cosmological�lower�bound�on�m� χ from� WMAP � direct�searches � indirect�searches � � � � � � � � � � � � � � � � � � � � � � � � ≤ � χ �

  3. “ ����������������������������� γ γ γ γ �������������������������� �������������������� ”, N.�Fornengo,�L.�Pieri�and�S.�Scopel,� Phys.�Rev.�D�70,�103529�(2004) “ ������������������������������������������� ������������������������������������������� ����������� ”,��A.�Bottino,�F.�Donato,�N.�Fornengo,�S.� Scopel,�Phys.Rev.�D�70,�015005�(2004) “ ������������������������������������������ ”, A.� Bottino,�F.�Donato,�N.�Fornengo,�S.�Scopel,�Phys.Rev.D69,� 037302�(2004) “ ���������������������������������������������������� ������������������������������������������ ”,�A.�Bottino,� F.�Donato,�N.�Fornengo,�S.�Scopel,�Phys.�Rev.�D�68,�043506� (2003) “ ����������������������� ”, A.�Bottino,�N.�Fornengo,�S.� Scopel,�Phys.�Rev.�D�67,�063519�(2003)

  4. ������������� ������������� � The�neutralino�is�defined�as�the�lowest9mass� ~ ~ linear�superposition�of�bino� B ,�wino� W (3) and�the� ~ ~ two�higgsino�states� H 10,� H 20� : ~ ~ ~ ~ χ ≡ + + + ( 3 ) 0 0 a B a W a H a H 1 2 1 1 1 2 � neutral,�colourless,�only�weak9type�interactions � stable if�R9parity�is�conserved,�thermal�relic � non�relativistic�at�decoupling� → Cold�Dark�Matter� (required�by�CMB�data�+�structure�formation� models) � relic�density�can�be�compatible�with�cosmological observations: 0.095� ≤ � χ h 2� ≤ 0.131 → IDEAL�CANDIDATE�FOR�COLD�DARK�MATTER

  5. � Most�analysis�on�the�SUSY�model�assume�that gaugino soft�masses�unify�at�the�GUT�scale � Gaugino mass�unification�implies�a�lower�bound� on�the�neutralino mass: � However�the�assumption�of�gaugino�mass� unification�at�the�GUT�scale�might�not�be� justified�(for�instance,�the�gaugino�unification� scale�may�be�much�lower�than�the�standard� GUT�scale)

  6. Effective�MSSM�scheme�(effMSSM)�– – Independent� Independent� Effective�MSSM�scheme�(effMSSM)� parameters parameters • M 1� U(1) gaugino�soft� • m q soft�mass�common� ~ breaking�term to�all�squarks • M 2� SU(2)�gaugino�soft� ~ • m l soft�mass�common� breaking�term to�all�sleptons • � Higgs�mixing�mass� • A� common� parameter dimensionless�trilinear� • tan β ratio�of�two�Higgs� v.e.v.’s parameter�for�the� third�family� (A b =�A t� ≡ • m A�� mass�of�CP�odd�neutral� ~ ~ Higgs�boson�(the�extended� Am q ;�A τ ≡ Am l ) ~ ~ ~ Higgs�sector�of�MSSM� • R� ≡ M 1 /M 2 includes�also�the�neutral� scalars� h,�H,� and�the� charged�scalars� H ± ) SUGRA → R = 0.5

  7. Lower�limit�on�the�neutralino�mass�from Lower�limit�on�the�neutralino�mass�from R ≥ 36 GeV m χ �������!������������������������������

  8. 0.5

  9. Experimental�constraints Experimental�constraints � accelerators�data�on�supersymmetric�and�Higgs� boson�searches�(CERN�e + e 9 collider�LEP2�and� Collider�Detector�CDF�at�Fermilab) � measurements�of�the�� b → s γ decay � measurement�of�the�muon�anomalous�magnetic� moment a µ ≡ ( * µ - �� / � µ ⋅ ⋅ �� �� ≤ ���� ( τ +e�data� ⋅ ⋅ (we�use ���� ≤ � � µ µ µ combined) , M.�Davier�et�al.,�Eur.�Phys.�J.�C31� (2003)�503;�K.�Hagiwara�et�al.,�hep9ph/0312250) � B S → � + � - decay,�D.�Acosta� et�al.� (CDF� Collaboration),�PRL93,032001(2004),�V.M.�Abazov� et�al.�(D0�Collaboration),�PRL94,071802,(2005))

  10. → � S → � + � - + � - decay decay B S B � SUSY�contribution�strongly�enhanced�at�high� tan�β and�low� m A ( ∝ ( tan�β) 6 /m A 4) (C.�Bobeth,�T.�Ewerth,�F.�Kruger�and�J.�Urban,� PRD64(2001)�074014) � tan�β – enhanced�SUSY�QCD�corrections�to�b�Yukawa� coupling�included

  11. → � S → � + � - + � - decay decay B S B Excluded configurations � Strong�correlation�with�direct�detection�signals (S.�Baek,� Y.�G.�Kim,�P.�Ko,�JHEP�0502:067,2005;�S.�Baek,�D.�G.� Cerdeño,�Y.G.�Kim,�P.�Ko�and�C.�Muñoz,�hep9ph/0505019)

  12. Sign�of�b9 9>�s� >�s� γ γ amplitude amplitude Sign�of�b • the�measurement�of�B(B9>�X s� P P)�is�sensitive�to�the� sign�of�the�b�9>�s� γ amplitude�C 7 : • b�9>�s� γ decay depends on |C 7 | 2 •Belle�and�BABAR�data�favour�a�negative�sign�of�C 7�� (same�of� the�standard�model) ( Gambino,�Haisch,�Misiak,�PRL94,061803�(2005) ) •sizeable�SUSY�correction�(light�stop�and�chargino,�high� tan β)� can�drive�C 7 to�positive�values�compatible�to�BR(b�9>�s�γ)�but� potentially�in�conflict�with�B(B9>�X s P P) (not�in�SUGRA)

  13. Dark�matter�density�from�WMAP Dark�matter�density�from�WMAP • CMB�data,�used�in�combination�with�other�cosmological� observations,�are�narrowing�down�the�range�of�the�matter� abundance��S m h 2� and�some�of�its�constituents,�S ν h 2� and�S b h 2� : 0.095�<�� CDM h 2� <�0.131 (2�σ range) 0.095�<�� CDM h 2� <�0.131 •The�upper�bound� (7 CDM h 2 ) max�� establishes�a�strict�upper�limit�for� any�specific�cold�species •The�lower�bound� (7 CDM h 2 ) max� fixes� the�value�of�the�average� abundance�below�which�the�halo�density�of�a�specific�cold� constituent�has�to�be�rescaled�as�compared�to�the�total�CDM�halo density� Rescaling�factor: ξ ≡ ρ χ / ρ 0 ≡ min(1, 7 χ h 2 /(7 CDM h 2 ) min� ) ρ χ = local�neutralino�density;� ρ 0 = total�local�dark�matter�density

  14. Cosmological�lower�bound�on� m m χ Cosmological�lower�bound�on� (low m ) χ (low A ) m A scatter�plot:� full�calculation upper�bound�on� 7 CDM h 2 curve:�analytical� approximation�for minimal� 7 CDM h 2�

  15. Cosmological�lower�bound�on� m m χ Cosmological�lower�bound�on� ( m ) χ ( > 200 GeV ) m A A > 200 GeV scatter�plot:� full�calculation upper�bound�on� 7 CDM h 2 curve:�analytical� approximation�for minimal� 7 CDM h 2�

  16. The�bottom�line:�the�cosmological�lower�bound� on m χ depends�on�the�value�of� m A : � m χ >�6�GeV� for�light� m A � m χ >�22�GeV� for�heavy� m A (7 CDM h 2 ) max� =�0.3 (7 CDM h 2 ) max� =�0.131

  17. SEARCHES SEARCHES

  18. "����������������������� "����������������������� • Direct�searches.�Elastic�scattering�of� χ off�nuclei • Direct�searches.�Elastic�scattering�of� χ off�nuclei ( ∝ WIMP�local�density) ( ∝ WIMP�local�density) χ + ? → χ + ?� χ + ? → χ + ?� • Indirect�searches.�Signals�due�to χ 9 χ annihilations • Indirect�searches.�Signals�due�to χ 9 χ annihilations g g g g − − f f f f W + W - W + W - ZZ ZZ − − − → → ν , ν , γ, p , e + , d χ + χ HH, hh, AA, hH, hA, HA, H + H - HH, hh, AA, hH, hA, HA, H + H - W + H - , W - H + W + H - , W - H + Zh, ZH, ZA Zh, ZH, ZA � Annihilations�taking�place�in�celestial�bodies�where χ ’s� have�been�accumulated: ν ’s → up9going� µ ’s�from�Earth� and�Sun � Annihilations�taking�place�in�the�Halo�of�the�Milky�Way�or� that�of�external�galaxies: enhanced�in�high�density�regions ( ∝ (WIMP�density) 2 ) ⇒ Galactic center,�clumpiness

Recommend


More recommend