Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Outline Motivation 1 The BMSSM 2 Dark Matter 3 Correlated stop-slepton masses Light stops, heavy sleptons Dark Matter Direct Detection 4 Dark Matter Indirect Detection 5 γ -rays Positrons Antiprotons Summary 6
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Corrections to the MSSM Assume that there is New Physics beyond the MSSM at a scale M , much above the electroweak scale m Z and the scale of the SUSY breaking terms m susy . ǫ ∼ m susy ∼ m Z M ≪ 1 M The corrections to the MSSM can be parametrized by operators suppressed by inverse powers of M ; i.e. by powers of ǫ .
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Corrections to the MSSM Assume that there is New Physics beyond the MSSM at a scale M , much above the electroweak scale m Z and the scale of the SUSY breaking terms m susy . ǫ ∼ m susy ∼ m Z M ≪ 1 M The corrections to the MSSM can be parametrized by operators suppressed by inverse powers of M ; i.e. by powers of ǫ . ➜ There can be significant e ff ects from non-renormalizable terms on the same order as the one-loop terms. We focus on an e ff ective action analysis to the Higgs sector as an approach to consider the e ff ects of New Physics Beyond the MSSM. Brignole, Casas, Espinosa, Navarro, 03 Dine, Seiberg, Thomas, 07
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Non-renormalizable operators Remember the ordinary MSSM superpotential: � d 2 θ µ H u H d W MSSM ⊃
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Non-renormalizable operators Remember the ordinary MSSM superpotential: � d 2 θ µ H u H d W MSSM ⊃ There are only 2 operators at order 1 M : 1 � d 2 θ ( H u H d ) 2 O 1 = M 1 � d 2 θ Z ( H u H d ) 2 O 2 = M Z ≡ θ 2 m susy : spurion field O 1 : is a dimension 5 SUSY operator O 2 : parametrizes SUSY breaking ➜ Both operators can lead to CP violation
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary BMSSM Higgs potential Corrections to the MSSM Higgs potential + ǫ 2 ( H u H d ) 2 + h.c. � u H u + H † � H † δ L = 2 ǫ 1 H u H d d H d + ǫ 1 � 2( H u H d )( ˜ H u ˜ H d ) + 2( ˜ H u H d )( H u ˜ H d ) µ ∗ � + ( H u ˜ H d )( H u ˜ H d ) + ( ˜ H u H d )( ˜ H u H d ) + h.c. where ǫ 1 ≡ µ ∗ λ 1 ǫ 2 ≡ − m susy λ 2 M M
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary BMSSM Higgs potential Corrections to the MSSM Higgs potential + ǫ 2 ( H u H d ) 2 + h.c. � u H u + H † � H † δ L = 2 ǫ 1 H u H d d H d + ǫ 1 � 2( H u H d )( ˜ H u ˜ H d ) + 2( ˜ H u H d )( H u ˜ H d ) µ ∗ � + ( H u ˜ H d )( H u ˜ H d ) + ( ˜ H u H d )( ˜ H u H d ) + h.c. where ǫ 1 ≡ µ ∗ λ 1 ǫ 2 ≡ − m susy λ 2 M M New contributions for Higgs boson masses
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary BMSSM Higgs potential Corrections to the MSSM Higgs potential + ǫ 2 ( H u H d ) 2 + h.c. � u H u + H † � H † δ L = 2 ǫ 1 H u H d d H d + ǫ 1 � 2( H u H d )( ˜ H u ˜ H d ) + 2( ˜ H u H d )( H u ˜ H d ) µ ∗ � + ( H u ˜ H d )( H u ˜ H d ) + ( ˜ H u H d )( ˜ H u H d ) + h.c. where ǫ 1 ≡ µ ∗ λ 1 ǫ 2 ≡ − m susy λ 2 M M New contributions for Higgs boson masses New contributions for higgsino ( χ 0 and χ ± ) masses
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary BMSSM Higgs potential Corrections to the MSSM Higgs potential + ǫ 2 ( H u H d ) 2 + h.c. � u H u + H † � H † δ L = 2 ǫ 1 H u H d d H d + ǫ 1 � 2( H u H d )( ˜ H u ˜ H d ) + 2( ˜ H u H d )( H u ˜ H d ) µ ∗ � + ( H u ˜ H d )( H u ˜ H d ) + ( ˜ H u H d )( ˜ H u H d ) + h.c. where ǫ 1 ≡ µ ∗ λ 1 ǫ 2 ≡ − m susy λ 2 M M New contributions for Higgs boson masses New contributions for higgsino ( χ 0 and χ ± ) masses New contributions for Higgs-higgsino couplings
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary BMSSM Higgs potential Corrections to the MSSM Higgs potential + ǫ 2 ( H u H d ) 2 + h.c. � u H u + H † � H † δ L = 2 ǫ 1 H u H d d H d + ǫ 1 � 2( H u H d )( ˜ H u ˜ H d ) + 2( ˜ H u H d )( H u ˜ H d ) µ ∗ � + ( H u ˜ H d )( H u ˜ H d ) + ( ˜ H u H d )( ˜ H u H d ) + h.c. where ǫ 1 ≡ µ ∗ λ 1 ǫ 2 ≡ − m susy λ 2 M M New contributions for Higgs boson masses New contributions for higgsino ( χ 0 and χ ± ) masses New contributions for Higgs-higgsino couplings Vacuum stability: | ǫ 1 | � 0 . 1, | ǫ 2 | � 0 . 05 see Blum, Delaunay, Hochberg, 09
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Higgs spectrum We consider the case where the NR operators can still be treated as perturbations: � 2 + δ ˜ � M 2 m tree t m 2 h + δ ǫ m 2 � (114 GeV) 2 h ≃ h h 2 ǫ 1 ( m 2 A + m 2 Z ) s 2 β + ǫ 2 ( m 2 A − m 2 Z ) c 2 2 β δ ǫ m 2 2 v 2 ǫ 2 − 2 ǫ 1 s 2 β − = h � Z ) 2 + 4 m 2 ( m 2 A − m 2 A m 2 Z s 2 2 β δ ǫ m 2 ∼ few dozens of GeVs! h The δ ǫ m 2 h relaxes the constraint in a significant way: for ǫ 1 � − 0 . 1 and tan β � 5, light and unmixed stops allowed!
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Higgs spectrum We consider the case where the NR operators can still be treated as perturbations: � 2 + δ ˜ � M 2 m tree t m 2 h + δ ǫ m 2 � (114 GeV) 2 h ≃ h h 2 ǫ 1 ( m 2 A + m 2 Z ) s 2 β + ǫ 2 ( m 2 A − m 2 Z ) c 2 2 β δ ǫ m 2 2 v 2 ǫ 2 − 2 ǫ 1 s 2 β − = h � Z ) 2 + 4 m 2 ( m 2 A − m 2 A m 2 Z s 2 2 β δ ǫ m 2 ∼ few dozens of GeVs! h The δ ǫ m 2 h relaxes the constraint in a significant way: for ǫ 1 � − 0 . 1 and tan β � 5, light and unmixed stops allowed! ➜ The SUSY little hierarchy problem can be avoided
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Higgs spectrum We consider the case where the NR operators can still be treated as perturbations: � 2 + δ ˜ � M 2 m tree t m 2 h + δ ǫ m 2 � (114 GeV) 2 h ≃ h h 2 ǫ 1 ( m 2 A + m 2 Z ) s 2 β + ǫ 2 ( m 2 A − m 2 Z ) c 2 2 β δ ǫ m 2 2 v 2 ǫ 2 − 2 ǫ 1 s 2 β − = h � Z ) 2 + 4 m 2 ( m 2 A − m 2 A m 2 Z s 2 2 β δ ǫ m 2 ∼ few dozens of GeVs! h The δ ǫ m 2 h relaxes the constraint in a significant way: for ǫ 1 � − 0 . 1 and tan β � 5, light and unmixed stops allowed! ➜ The SUSY little hierarchy problem can be avoided Other Higgs masses also receive corrections...
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Higgs spectrum 140 ǫ 1 = 0 140 ǫ 2 = 0 ǫ 1 = 0 . 05 = 0 . 03 ǫ 2 = 0 . 05 m h 0 (GeV) m h 0 (GeV) ǫ ǫ 1 = 0, 1-loop 1 120 120 = 0 . 01 ǫ 1 0 = ǫ 2 ǫ 1 = 0, 2-loop 100 100 gray area: gray area: LEP Higgs mass bound LEP Higgs mass bound 80 80 ǫ 1 = 0, tree level − 3 − 2 − 1 0 1 2 3 − 3 − 2 − 1 0 1 2 3 A t /m 0 A t /m 0 By Berg, Edsjö, Gondolo, Lundström and Sjörs, 09’ The δ ǫ m 2 h relaxes the constraint in a significant way: for ǫ 1 � − 0 . 1 and tan β � 5, light and unmixed stops allowed! ➜ The SUSY little hierarchy problem can be avoided Other Higgs masses also receive corrections...
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Higgsinos 0 0 0 0 M 1 0 − m Z s W c β m Z s W s β 0 0 0 0 4 ǫ 1 m 2 0 M 2 m Z c W c β − m Z c W s β W M χ 0 = + s 2 µ ∗ g 2 0 0 s 2 β − m Z s W c β m Z c W c β 0 − µ β m Z s W s β − m Z c W s β − µ 0 c 2 0 0 s 2 β β The lightest neutralino χ 0 1 is a natural candidate for cold dark matter! The NR operators also modify the chargino mass matrix Higgs-higgsino-higgsino & Higgs-Higgs-higgsino-higgsino couplings (DM annihilation cross sections) Berg, Edsjö, Gondolo, Lundström, Sjörs, ‘09; NB, Blum, Losada, Nir, ‘09
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Higgsinos 0 0 0 0 M 1 0 − m Z s W c β m Z s W s β 0 0 0 0 4 ǫ 1 m 2 0 M 2 m Z c W c β − m Z c W s β W M χ 0 = + s 2 µ ∗ g 2 0 0 s 2 β − m Z s W c β m Z c W c β 0 − µ β m Z s W s β − m Z c W s β − µ 0 c 2 0 0 s 2 β β The lightest neutralino χ 0 1 is a natural candidate for cold dark matter! The NR operators also modify the chargino mass matrix Higgs-higgsino-higgsino & Higgs-Higgs-higgsino-higgsino couplings (DM annihilation cross sections) Berg, Edsjö, Gondolo, Lundström, Sjörs, ‘09; NB, Blum, Losada, Nir, ‘09 ➜ Spectrum, dark matter relic density and DM detection rates are calculated using modified versions of SuSpect and micrOMEGAs
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Outline Motivation 1 The BMSSM 2 Dark Matter 3 Correlated stop-slepton masses Light stops, heavy sleptons Dark Matter Direct Detection 4 Dark Matter Indirect Detection 5 γ -rays Positrons Antiprotons Summary 6
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses: mSUGRA-like The mSUGRA model is specified by 5 parameters: tan β : ratio of the Higgs vevs m 1 / 2 : common mass for the gauginos (bino, wino and gluino) m 0 : universal scalar mass (sfermions and Higgs bosons) A 0 : universal trilinear coupling sign µ : sign of the µ parameter In mSUGRA scenarios usually the lightest neutralino is the LSP Because of the LEP constraint over the Higgs mass, the bulk region (i.e. low m 0 and low m 1 / 2 ) is ruled out.
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 mSUGRA 600 tan β =3, ε 1 = ε 2 =0 104 ∼ LSP τ LEP 500 WMAP Higgs m 1/2 [GeV] 400 100 300 95 200 90 100 100 200 300 400 500 600 m 0 [GeV]
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 mSUGRA 600 tan β =3, ε 1 = ε 2 =0 104 ∼ LSP τ LEP 500 WMAP Higgs m 1/2 [GeV] 400 100 300 95 200 90 100 100 200 300 400 500 600 m 0 [GeV] Regions excluded: ˜ τ LSP
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 mSUGRA 600 tan β =3, ε 1 = ε 2 =0 104 ∼ LSP τ LEP 500 WMAP Higgs m 1/2 [GeV] 400 100 300 95 200 90 100 100 200 300 400 500 600 m 0 [GeV] τ LSP and χ ± searches at LEP Regions excluded: ˜
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 mSUGRA 600 tan β =3, ε 1 = ε 2 =0 104 ∼ LSP τ LEP 500 WMAP Higgs m 1/2 [GeV] 400 100 300 95 200 90 100 100 200 300 400 500 600 m 0 [GeV] τ LSP and χ ± searches at LEP Regions excluded: ˜ Bulk region: LSP is mainly bino-like. DM relic density too high
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 mSUGRA 600 tan β =3, ε 1 = ε 2 =0 104 ∼ LSP τ LEP 500 WMAP Higgs m 1/2 [GeV] 400 100 300 95 200 90 100 100 200 300 400 500 600 m 0 [GeV] τ LSP and χ ± searches at LEP Regions excluded: ˜ Bulk region: LSP is mainly bino-like. DM relic density too high Regions fulfilling WMAP measurements: ✔ Coannihilation with ˜ τ
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 mSUGRA 600 tan β =3, ε 1 = ε 2 =0 104 ∼ LSP τ LEP 500 WMAP Higgs m 1/2 [GeV] 400 100 300 95 200 90 100 100 200 300 400 500 600 m 0 [GeV] τ LSP and χ ± searches at LEP Regions excluded: ˜ Bulk region: LSP is mainly bino-like. DM relic density too high Regions fulfilling WMAP measurements: ✔ Coannihilation with ˜ τ ✔ Higgs- and Z -poles: m h ∼ m Z ∼ 2 m χ s -channel exchange
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 mSUGRA 600 tan β =3, ε 1 = ε 2 =0 104 ∼ LSP τ LEP 500 WMAP Higgs m 1/2 [GeV] 400 100 300 95 200 90 100 100 200 300 400 500 600 m 0 [GeV] τ LSP and χ ± searches at LEP Regions excluded: ˜ Bulk region: LSP is mainly bino-like. DM relic density too high Regions fulfilling WMAP measurements: ✔ Coannihilation with ˜ τ ✔ Higgs- and Z -poles: m h ∼ m Z ∼ 2 m χ s -channel exchange ✘ However m h � 105 GeV: The whole region is excluded!
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 ǫ 1 = − 0 . 1, ǫ 2 = 0 mSUGRA BMSSM mSUGRA-like 600 600 tan β =3, ε 1 = ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 104 ∼ LSP ∼ LSP τ τ LEP LEP 500 500 WMAP WMAP Higgs Higgs 158 m 1/2 [GeV] m 1/2 [GeV] 400 400 100 300 300 156 95 200 200 90 154 100 100 100 200 300 400 500 600 100 200 300 400 500 600 m 0 [GeV] m 0 [GeV] It should not be taken as an extended mSUGRA, but just as a framework specified at low energy.
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 ǫ 1 = − 0 . 1, ǫ 2 = 0 mSUGRA BMSSM mSUGRA-like 600 600 tan β =3, ε 1 = ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 104 ∼ LSP ∼ LSP τ τ LEP LEP 500 500 WMAP WMAP Higgs Higgs 158 m 1/2 [GeV] m 1/2 [GeV] 400 400 100 300 300 156 95 200 200 90 154 100 100 100 200 300 400 500 600 100 200 300 400 500 600 m 0 [GeV] m 0 [GeV] It should not be taken as an extended mSUGRA, but just as a framework specified at low energy. ✔ Important uplift of the Higgs mass → ‘bulk region’ re-opened
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 ǫ 1 = − 0 . 1, ǫ 2 = 0 mSUGRA BMSSM mSUGRA-like 600 600 tan β =3, ε 1 = ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 104 ∼ LSP ∼ LSP τ τ LEP LEP 500 500 WMAP WMAP Higgs Higgs 158 m 1/2 [GeV] m 1/2 [GeV] 400 400 100 300 300 156 95 200 200 90 154 100 100 100 200 300 400 500 600 100 200 300 400 500 600 m 0 [GeV] m 0 [GeV] It should not be taken as an extended mSUGRA, but just as a framework specified at low energy. ✔ Important uplift of the Higgs mass → ‘bulk region’ re-opened New region fulfilling DM constraint: Higgs-funnel
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses Let’s take: A 0 = 0 GeV, µ > 0 and tan β = 3 ǫ 1 = − 0 . 1, ǫ 2 = 0 mSUGRA BMSSM mSUGRA-like 600 600 tan β =3, ε 1 = ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 104 ∼ LSP ∼ LSP τ τ LEP LEP 500 500 WMAP WMAP Higgs Higgs 158 m 1/2 [GeV] m 1/2 [GeV] 400 400 100 300 300 156 95 200 200 90 154 100 100 100 200 300 400 500 600 100 200 300 400 500 600 m 0 [GeV] m 0 [GeV] It should not be taken as an extended mSUGRA, but just as a framework specified at low energy. ✔ Important uplift of the Higgs mass → ‘bulk region’ re-opened New region fulfilling DM constraint: Higgs-funnel χ 0 1 bino-like: marginal impact on m χ and ann. cross section
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons Now we consider a low-energy scenario giving rise to light stops tan β : ratio of the Higgs vevs µ : higgsino mass parameter m A : pseudoscalar Higgs mass parameter X t : trilinear coupling for stops, X t = A t − µ/ tan β M 2 : wino mass parameter, M 1 ∼ 1 2 M 2 m U : stop right mass parameter m Q : 3 rd generation squarks left mass parameter f : mass for sleptons, 1 st and 2 nd gen. squarks and ˜ m ˜ b R m U = 210 GeV, X t = 0 GeV, m Q = m ˜ f = m A = 500 GeV
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons Now we consider a low-energy scenario giving rise to light stops tan β : ratio of the Higgs vevs µ : higgsino mass parameter m A : pseudoscalar Higgs mass parameter X t : trilinear coupling for stops, X t = A t − µ/ tan β M 2 : wino mass parameter, M 1 ∼ 1 2 M 2 m U : stop right mass parameter m Q : 3 rd generation squarks left mass parameter f : mass for sleptons, 1 st and 2 nd gen. squarks and ˜ m ˜ b R m U = 210 GeV, X t = 0 GeV, m Q = m ˜ f = m A = 500 GeV m ˜ t 1 � 150 GeV , 370 GeV � m ˜ t 2 � 400 GeV A scenario with light unmixed stops is ruled out in the MSSM
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV]
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] Regions excluded: ˜ t LSP
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] t LSP and χ ± searches at LEP Regions excluded: ˜
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] t LSP and χ ± searches at LEP Regions excluded: ˜ Regions fulfilling WMAP measurements: ✔ Coannihilation with ˜ t : χ ˜ t → Wb , tg ˜ t ˜ t → gg
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] t LSP and χ ± searches at LEP Regions excluded: ˜ Regions fulfilling WMAP measurements: ✔ Coannihilation with ˜ t : χ ˜ t → Wb , tg ˜ t ˜ t → gg ✔ Higgs- and Z -poles: m h ∼ m Z ∼ 2 m χ s -channel exchange
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] t LSP and χ ± searches at LEP Regions excluded: ˜ Regions fulfilling WMAP measurements: ✔ Coannihilation with ˜ t : χ ˜ t → Wb , tg ˜ t ˜ t → gg ✔ Higgs- and Z -poles: m h ∼ m Z ∼ 2 m χ s -channel exchange ✘ However m h � 85 GeV: The whole region is excluded!
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 WMAP ∼ t 1 LSP LEP 400 400 V. stability µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] ✔ important uplift of the Higgs mass: m h ∼ 122 GeV
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 WMAP ∼ t 1 LSP LEP 400 400 V. stability µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] ✔ important uplift of the Higgs mass: m h ∼ 122 GeV ✘ NR operators destabilize scalar potential: vacuum metastable
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 WMAP ∼ t 1 LSP LEP 400 400 V. stability µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] ✔ important uplift of the Higgs mass: m h ∼ 122 GeV ✘ NR operators destabilize scalar potential: vacuum metastable new region fulfilling DM constraint: Higgs-funnel
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 WMAP ∼ t 1 LSP LEP 400 400 V. stability µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] ✔ important uplift of the Higgs mass: m h ∼ 122 GeV ✘ NR operators destabilize scalar potential: vacuum metastable new region fulfilling DM constraint: Higgs-funnel sizable impact on m χ and ann. cross section when χ 0 1 is higgsino-like
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Outline Motivation 1 The BMSSM 2 Dark Matter 3 Correlated stop-slepton masses Light stops, heavy sleptons Dark Matter Direct Detection 4 Dark Matter Indirect Detection 5 γ -rays Positrons Antiprotons Summary 6
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter direct detection Direct detection experiments are designed to detect dark matter particles by their elastic collision with target nuclei , placed in a detector on the Earth. XENON Exposures: ε = 30, 300, 3000 kg · year Xenon1T and 11 days, 4 months or 3 years
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter direct detection Direct detection experiments are designed to detect dark matter particles by their elastic collision Xenon discriminates signal from background with target nuclei , placed in a detector on the by simultaneous measurements of: Earth. scintillation ionization XENON The collaboration expects to have a negligible background. ➜ 7 energy bins between [4 , 30] keV Detectability definition: � 2 � − N bkg N tot 7 χ 2 = � i i N tot i i = 1 Exposures: ε = 30, 300, 3000 kg · year Xenon1T and 11 days, 4 months or 3 years
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter direct detection Recoil rates Direct detection experiments are designed to detect � v esc = σ χ − p · ρ 0 dN f ( v ) dark matter particles by their elastic collision F ( E r ) 2 dv 2 M 2 dE r v with target nuclei , placed in a detector on the r m χ v min ( E r ) Earth. m χ m N Reduced mass M r = m χ + m N XENON N : number of scatterings (s − 1 kg − 1 ) E r : nuclear recoil energy ∼ few keV m χ : WIMP mass σ χ − p : WIMP-proton scattering cross-section ➜ Assume pure spin-independent coupling 0 . 38 GeV cm − 3 ρ 0 : local WIMP density F : nuclear form factor Woods-Saxon f ( v ): WIMP local vel. distribution M.B. 1 v � e − ( v − 1 . 05 v 0 ) 2 / v 2 f ( v ) = √ π 0 1 . 05 v 2 0 Exposures: ε = 30, 300, 3000 kg · year � − e − ( v + 1 . 05 v 0 ) 2 / v 2 Xenon1T and 11 days, 4 months or 3 years 0
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 values ( m 0 → increase squark masses, m 1 / 2 → increase LSP mass)
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 values For low m 1 / 2 , LSP tends to be a higgsino-bino mixed state ( C χχ h )
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 values For low m 1 / 2 , LSP tends to be a higgsino-bino mixed state ( C χχ h ) Detection maximised for low tan β , C χχ h ∝ sin 2 β ( | µ | ≫ M 1 )
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 values For low m 1 / 2 , LSP tends to be a higgsino-bino mixed state ( C χχ h ) Detection maximised for low tan β , C χχ h ∝ sin 2 β ( | µ | ≫ M 1 ) ✔ Sizable amount of the parameter space can be probed
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA BMSSM mSUGRA-like tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 1000 1000 900 900 WMAP ∼ LSP τ 800 800 LEP ε =3000 700 700 m 1/2 [GeV] m 1/2 [GeV] ε =300 600 600 ε =30 500 500 400 400 300 300 200 200 100 100 100 300 500 700 900 100 300 500 700 900 m 0 [GeV] m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 values For low m 1 / 2 , LSP tends to be a higgsino-bino mixed state ( C χχ h ) Detection maximised for low tan β , C χχ h ∝ sin 2 β ( | µ | ≫ M 1 ) ✔ Sizable amount of the parameter space can be probed ➜ NR operators → deterioration of the detection: m h ✔ But without NR operators, the parameter space was excluded!
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ✘ Partially ruled out by first results from Xenon100!
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ✘ Partially ruled out by first results from Xenon100! Detection prospects maximised for low µ and / or M 1 : light LSP
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ✘ Partially ruled out by first results from Xenon100! Detection prospects maximised for low µ and / or M 1 : light LSP Scattering cross section enhanced near µ ∼ M 1 ( C χχ h , C χχ H )
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM tan β =3, ε 1 =0, ε 2 =0 500 400 µ [GeV] 300 200 100 50 100 150 200 250 M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ✘ Partially ruled out by first results from Xenon100! Detection prospects maximised for low µ and / or M 1 : light LSP Scattering cross section enhanced near µ ∼ M 1 ( C χχ h , C χχ H ) Neither Z - nor h -funnel enhance SI direct detection Spin-dependent detection sensible to the Z -peak (non-universality)
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 400 400 µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ✘ Partially ruled out by first results from Xenon100! Detection prospects maximised for low µ and / or M 1 : light LSP Scattering cross section enhanced near µ ∼ M 1 ( C χχ h , C χχ H ) Neither Z - nor h -funnel enhance SI direct detection ➜ NR operators deteriorates DD: increase m h and suppression C χχ h
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 400 400 µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ✘ Partially ruled out by first results from Xenon100! Detection prospects maximised for low µ and / or M 1 : light LSP Scattering cross section enhanced near µ ∼ M 1 ( C χχ h , C χχ H ) Neither Z - nor h -funnel enhance SI direct detection ➜ NR operators deteriorates DD: increase m h and suppression C χχ h ✔ BMSSM satisfies all DD measurements!
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Outline Motivation 1 The BMSSM 2 Dark Matter 3 Correlated stop-slepton masses Light stops, heavy sleptons Dark Matter Direct Detection 4 Dark Matter Indirect Detection 5 γ -rays Positrons Antiprotons Summary 6
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter indirect detection ( γ -rays) We study the ability of Fermi to identify Gamma-rays generated in DM annihilation in the galactic center χ → b ¯ χ ¯ b , WW · · · → γ + . . .
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter indirect detection ( γ -rays) We study the ability of Fermi to identify Gamma-rays generated in DM annihilation in the galactic center χ → b ¯ χ ¯ b , WW · · · → γ + . . .
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter indirect detection ( γ -rays) We study the ability of Fermi to identify Gamma-rays generated in DM annihilation in the galactic center χ → b ¯ χ ¯ b , WW · · · → γ + . . .
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter indirect detection ( γ -rays) We study the ability of Fermi to identify Gamma-rays generated in DM annihilation in the galactic center χ → b ¯ χ ¯ b , WW · · · → γ + . . . Fermi telescope (Launched ‘08)
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter indirect detection ( γ -rays) Di ff erential event rate We study the ability of Fermi to identify Gamma-rays generated in dN i 1 � γ DM annihilation in the galactic center � ρ ( r ) 2 dl Φ γ ( E γ , ψ ) = � σ i v � dE γ 8 π m χ 2 los i χ → b ¯ χ ¯ b , WW · · · → γ + . . . dN dE : spectrum of secondary particles E γ : gamma energy � σ v � : averaged annihilation cross-section by velocity ρ ( r ): dark matter halo profile 5-years data acquisition, ∆Ω = 3 · 10 − 5 sr Background: HESS measurements (Di ff use Galactic emision and Sagittarius A ∗ ) Fermi telescope (Launched ‘08)
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter indirect detection ( γ -rays) Di ff erential event rate We study the ability of Fermi to identify Gamma-rays generated in dN i � DM annihilation in the galactic center 1 � γ ρ ( r ) 2 dl Φ γ ( E γ , ψ ) = � σ i v � 8 π m χ 2 dE γ los i χ → b ¯ χ ¯ b , WW · · · → γ + . . . dN dE : spectrum of secondary particles E γ : gamma energy � σ v � : averaged annihilation cross-section by velocity ρ ( r ): dark matter halo profile 10 1 E γ · dN γ /dE γ 0.1 WW ZZ bb ττ 0.01 m χ = 100 GeV uu dd Fermi telescope (Launched ‘08) 0.001 1 10 100 E γ (GeV)
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Dark matter indirect detection ( γ -rays) Di ff erential event rate We study the ability of Fermi to identify Gamma-rays generated in dN i DM annihilation in the galactic center 1 � � γ ρ ( r ) 2 dl Φ γ ( E γ , ψ ) = � σ i v � 8 π m χ 2 dE γ los i χ → b ¯ χ ¯ b , WW · · · → γ + . . . dN dE : spectrum of secondary particles E γ : gamma energy � σ v � : averaged annihilation cross-section by velocity ρ ( r ): dark matter halo profile 3 halo profiles: Einasto, NFW and NFW c (adiabatic Fermi telescope (Launched ‘08) compression due to baryons)
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 Thresholds: χχ → W + W − , χχ → t ¯ t
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 Thresholds: χχ → W + W − , χχ → t ¯ t Detection maximised for high tan β χχ → b ¯ b and ττ ∝ tan β and 1 / cos β
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 Thresholds: χχ → W + W − , χχ → t ¯ t Detection maximised for high tan β χχ → b ¯ b and ττ ∝ tan β and 1 / cos β For large tan β thresholds weaken
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA tan β =3, ε 1 =0, ε 2 =0 1000 900 800 700 m 1/2 [GeV] 600 500 400 300 200 100 100 300 500 700 900 m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 Thresholds: χχ → W + W − , χχ → t ¯ t Detection maximised for high tan β χχ → b ¯ b and ττ ∝ tan β and 1 / cos β For large tan β thresholds weaken Only scenarios with highly cusped inner regions could be probed
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Correlated stop-slepton masses mSUGRA BMSSM mSUGRA-like tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 1000 1000 900 900 WMAP ∼ LSP τ 800 800 LEP 700 700 NFW c m 1/2 [GeV] m 1/2 [GeV] 600 600 500 500 400 400 300 300 200 200 100 100 100 300 500 700 900 100 300 500 700 900 m 0 [GeV] m 0 [GeV] Exclusion lines: ability to test and exclude at 95% CL Detection prospects maximised for low m 0 and m 1 / 2 Thresholds: χχ → W + W − , χχ → t ¯ t Detection maximised for high tan β χχ → b ¯ b and ττ ∝ tan β and 1 / cos β For large tan β thresholds weaken Only scenarios with highly cusped inner regions could be probed NR operators: Higgs pole ‘invisible’ ( v → 0)
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 WMAP ∼ t 1 LSP LEP 400 400 V. stability NFW c µ [GeV] µ [GeV] NFW Einasto 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 WMAP ∼ t 1 LSP LEP 400 400 V. stability NFW c µ [GeV] µ [GeV] NFW Einasto 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ( χχ Z and χχ ± W ∓ couplings) Detection enhanced for M 1 ≫ µ
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 WMAP ∼ t 1 LSP LEP 400 400 V. stability NFW c µ [GeV] µ [GeV] NFW Einasto 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ( χχ Z and χχ ± W ∓ couplings) Detection enhanced for M 1 ≫ µ � σ v � enhanced for high tan β ( χχ → b ¯ b , WW )
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 WMAP ∼ t 1 LSP LEP 400 400 V. stability NFW c µ [GeV] µ [GeV] NFW Einasto 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ( χχ Z and χχ ± W ∓ couplings) Detection enhanced for M 1 ≫ µ � σ v � enhanced for high tan β ( χχ → b ¯ b , WW ) h -funnel could not be tested (no s -wave contribution)
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 WMAP ∼ t 1 LSP LEP 400 400 V. stability NFW c µ [GeV] µ [GeV] NFW Einasto 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] Exclusion lines: ability to test and exclude at 95% CL ( χχ Z and χχ ± W ∓ couplings) Detection enhanced for M 1 ≫ µ � σ v � enhanced for high tan β ( χχ → b ¯ b , WW ) h -funnel could not be tested (no s -wave contribution) NFW and Einasto could test some regions, but not relevant
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Antimatter ( e + and ¯ p ) propagation picture provided by M. Cirelli ➜ Di ff usion equation solved in the Di ff usive zone Baltz & Edsjö ’98; Lavalle, Pochon, Salati & Taillet ’06 ∂ f ∂ t = K ( E ) ∇ 2 f + Q inj + ∂ � b ( E ) f � − 2 h δ ( z ) Γ ann f − ∂ � V c f � ∂ E ∂ z di ff usion source energy loss spallation convective wind
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons - Positrons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 400 400 µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV]
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons - Positrons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 400 400 µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] ➜ Perspectives for the oncoming AMS-02 satellite background: Fermi & PAMELA measurements. PAMELA’s ‘heritage’: A quite large background that is di ffi cult to overcome.
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons - Positrons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 400 400 µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] ➜ Perspectives for the oncoming AMS-02 satellite background: Fermi & PAMELA measurements. PAMELA’s ‘heritage’: A quite large background that is di ffi cult to overcome. ✘ PAMELA excess buries all signals
Motivation The BMSSM Dark Matter Direct Detection Indirect Detection Summary Light stops, heavy sleptons - Positrons MSSM BMSSM tan β =3, ε 1 =0, ε 2 =0 tan β =3, ε 1 =-0.1, ε 2 =0 500 500 400 400 µ [GeV] µ [GeV] 300 300 200 200 100 100 50 100 150 200 250 50 100 150 200 250 M 1 [GeV] M 1 [GeV] ➜ Perspectives for the oncoming AMS-02 satellite background: Fermi & PAMELA measurements. PAMELA’s ‘heritage’: A quite large background that is di ffi cult to overcome. ✘ PAMELA excess buries all signals Some small hope in the region where the LSP carries a significant higgsino component, due to the rise in the coupling with Z’s
Recommend
More recommend