nanomeshing
play

Nanomeshing Adds Multifunctionality to Conventional Neuroelectrodes - PowerPoint PPT Presentation

The 16 th U.S.-Korea Forum on Nanotechnology Nanomeshing Adds Multifunctionality to Conventional Neuroelectrodes Hui Fang, Ph.D. Assistant Professor, Electrical and Computer Engineering, Affiliated Faculty, Bioengineering, Mechanical &


  1. The 16 th U.S.-Korea Forum on Nanotechnology Nanomeshing Adds Multifunctionality to Conventional Neuroelectrodes Hui Fang, Ph.D. Assistant Professor, Electrical and Computer Engineering, Affiliated Faculty, Bioengineering, Mechanical & Industrial Engineering, https://www.northeastern.edu/fang/

  2. Biotic/abiotic interface challenges limit the scaling of microelectrode arrays (MEAs) 10 11 10 9 10 7 10 5 10 3 10 1 1970 1980 1990 2000 2010 2020 IEEE Trans Bio-Med Eng, 1970 IEEE Trans Rehabil Eng, 1999 Neuralink, 2019 9/24/2019 Fang Research Group 2

  3. Correspondence problems limit the accurate decoding of brain activity Brain fMRI/PET Lobe 10 2 EEG/MEG Map Spatial scale (mm) 10 1 Nucleus 10 0 Calcium imaging Layer Light microscopy 10 -1 Implantable microelectrodes Neuron 10 -2 Patch clamp Dendrite 10 -3 Synapse 10 -4 Temporal scale 9/24/2019 Fang Research Group 3

  4. Effectively bridging electrical and optical brain mapping requires transparent MEAs Non-penetrating Penetrating On- µ Prism Prism 100 µm 1 mm μm μm 500 µm Seo, Fang* et al., Advanced Biosystems, 2019 Unpublished Qiang, Fang* et al., Science Advances, 2018 9/24/2019 Fang Research Group 4

  5. Nanomeshing adds transparency to conventional neuroelectrodes Performance benchmark Bilayer Nanomesh Bilayer nanomesh nm 80 1000 5 µm 40 NeuroNexus 0 PEDOT:PSS -40 Impedance (k Ω ) 100 -80 Au 10 Template electroplating Au/PEDOT:PSS NM Au NM 10 × 10 100 × 100 Site area (µm 2 ) 500nm 500nm Qiang, Fang* et al, Advanced Functional Materials, 2017 Seo, Fang* et al, ACS Nano 2017 9/24/2019 Fang Research Group 5

  6. Moving towards stretchable nanomesh to enable ultra- softness ‘There is plenty of room at the bottom’ Nanomesh Ultrathin support 1 3 1 µm 1 µm 2 4 3 1 2 4 1 µm 1 µm Seo, Fang* et al, Appl. Phys. Lett. 2018 9/24/2019 Fang Research Group 6

  7. Technology roadmap for nanomesh µ bioelectronics Nanomesh µ Bioelectronics 2017 2018 2019 2020 Future Now Multifunctional 1 st nanomesh 1 st wafer-scale 1 st penetrating nanomesh MEA microelectrode stretchable nanomesh Materials design High resolution & large throughput Advanced 500 µm 10 mm manufacturing Applied Physics Letters 2018 ACS Nano 2017 Advanced Biosystems 2019 1 st nanomesh MEA & Application 1 st Si nanomesh 1 st bilayer nanomesh concurrent Ca 2+ imaging specific System integration 1 µm Intelligent 1 mm Data handling Adv. Fun. Mater. 2017 npj Flexible Electronics 2019 Science Advances 2018 9/24/2019 Fang Research Group 7

  8. Acknowledgements Fang Group Members Collaborators Funding • • • NSF CAREER 1847215 (Fang) Dr. Wen Gu Prof. Michela Fagiolini (BCH) • • • NSF 1905575 (Fang, Wang) Dr. Hassan Hafeez (PhD Prof. Wentai Liu (UCLA) from Hanyang U.) • • NIH 1R21EY030710-01 (Fang, Walker) Prof. Ralph Weissleder (MGH) • Dr. Zeinab Ramezani • • Samsung GRO (Fang) Prof. Claudio Vinegoni (MGH) • Kyung Jin (KJ) Seo (from • • DoD W81XWH-18-1-0699 (Dulla, Fang) Prof. Chris Dulla (Tufts) UIUC) • Prof. Dong Feng Chen (MEEI) • Yi Qiang • Prof. Shuodao Wang (OKState) • Jae Hyeon Ryu (from KIST) • Prof. Ross Walker (Utah) • Zhan Shi • Prof. Heather Clark (NU) • Nicholas Zhang • Prof. Swastik Kar (NU) • Prof. Katherine Ziemer (NU) 9/24/2019 Fang Research Group 8

Recommend


More recommend