multiwavelength studies of hess j1825 137 of the ism next
play

Multiwavelength studies of HESS J1825-137 of the ISM next to HESS - PowerPoint PPT Presentation

Multiwavelength studies of HESS J1825-137 of the ISM next to HESS J1825137 and preliminary results from other TeV source Nanten meeting 2015 F. Voisin Overall: HESS J1825-137 and HESS J1826-130 TeV source powered by 140 -12.80 Nanten


  1. Multiwavelength studies of HESS J1825-137 of the ISM next to HESS J1825–137 and preliminary results from other TeV source Nanten meeting 2015 F. Voisin

  2. Overall: HESS J1825-137 and HESS J1826-130 ◮ TeV source powered by 140 -12.80 Nanten PSR J1826-1334 DEC HESS J1826-130 P2 HESS -13.00 ◮ Spin down power 120 -13.20 HESSJ1825-137 E SN =2.8 × 10 36 erg.s − 1 , ˙ -13.40 P1 100 -13.60 pulsar period 101 ms and -13.80 80 d ∼ 4 . 0 ± 0 . 1 kpc -14.00 -14.20 ◮ τ = ˙ P 2 P indicates a pulsar 60 -14.40 characteristic age of τ ∼ -14.60 LS 5039 40 RA 20 kyr 18.480 18.460 18.440 18.420 18.400 18.380 18.360 18.340 ◮ Pulsar J1826-1256 Spin Excess count map of HESS J1825-137 from HESS. down power P1: PSR J1826-1334 E SN =4.9 × 10 36 erg.s − 1 , ˙ P2: PSR J1826-1256. (Aharonian et al 2006) pulsar period ∼ 100 ms and τ ∼ 14kyr (Abdo et al 2009)

  3. ◮ Covers ∼ 1 degree of the galactic plane ◮ Asymmetry in the γ -ray morphology due to the interaction between the progenitor SNR and the northern dense molecular cloud ◮ Energy dependent morphology is suggesting a leptonic scenario (Aharonian et al 2006) HESS J1825-137 Energy morphology ◮ What is the origin of map Red - Total flux below 0.8 TeV HESSJ1826-130 to the Green - Total flux bewteen 0.8-2.5 TeV north? Blue - Total flux above 2.5 TeV(De Jager and Djannati ata¨ ı 2008)

  4. Motivations ◮ Determine the nature of the HESS J1826-130 emission north to HESS J1825-137:Hadronic or Leptonic? ◮ γ -ray emission over HESS J1826-130 overlaps with a giant molecular cloud first observed by Lemi` ere et al (2004) .Origins from progenitor SNR, PWN? ◮ Pulsar hadronic wind theoretically expected and indirect evidence seen (wisp structures) (e.g. Hoshino et al 1992, Gallant et al 1994, Gaensler et al 2002 ) ◮ TeV hadronic emission possible from PWN (e.g. Amato et al 2003 and 2013, Horns et al 2007) ◮ Progenitor SNR as particle accelerator?

  5. Nanten CO(1-0) 160 Mopra CS(1-0) 4 -12.4 CR4 Nanten CO(1-0) 150 -12.8 Mopra CS(1-0) -12.6 K km/s CR4 140 -12.9 -12.8 3.5 P2 130 -13.0 -13.0 CR2 HESS J1825-137 CR2 CR3 P2 -13.2 CR5 120 Declination -13.1 CR1 Declination CR3 3 -13.4 110 P1 -13.2 CR1 -13.6 CR5 100 -13.3 -13.8 CR6 2.5 90 -14.0 -13.4 80 -14.2 HESS J1825-137 -13.5 2 P1 -14.4 70 18.46 18.45 18.44 18.43 18.42 18.41 18.48 18.46 18.44 18.42 18.40 18.38 18.36 60 Right ascension Right ascension GRS 13CO(1-0) 20 Mopra NH3(1,1) -12.4 NR4 3 HESS J1825-137 HESS J1825-137 HESS J1825-137 HESS J1825-137 HESS J1825-137 HESS J1825-137 GRS 13CO(1-0) -12.8 Mopra NH3(1,1) 18 -12.6 CR4 K km/s -12.9 -12.8 2.5 16 P2 -13.0 -13.0 CR2 CR3 P2 NR2 -13.2 Declination CR5 14 -13.1 CR1 Declination -13.4 2 P1 -13.2 NR3 -13.6 12 NR5 CR6 -13.3 -13.8 1.5 10 -14.0 -13.4 NR1 -14.2 HESS J1825-137 8 -13.5 P1 1 -14.4 18.48 18.46 18.44 18.42 18.40 18.38 18.36 18.46 18.45 18.44 18.43 18.42 18.41 6 Right ascension Right ascension Integrated intensity map between v lsr :40-60 km/s , kinematic distance:3.6-4.3 kpc CR:Regions where CS(1-0), 13 CO(1-0),CO(1-0) are observed. NR:Regions where NH 3 are also observed.

  6. P1 CR1/NR1 CR2/NR2 Antenna Temperature T A (K) Antenna Temperature T A (K) 20.0 NH 3 (1,1) NH 3 (1,1) CO(1-0) CO(1-0) 0.4 15.0 0.10 10.0 10.0 0.2 5.0 5.0 0.00 0.0 0.0 0.0 0.2 2.0 13 CO(1-0) 2.0 13 CO(1-0) NH 3 (2,2) NH 3 (2,2) 0.05 0.1 1.0 1.0 0.00 0.0 0.0 0.0 0.6 0.3 0.08 CS(1-0) NH 3 (3,3) 0.02 CS(1-0) NH 3 (3,3) 0.4 0.2 0.04 0.1 0.00 0.2 0.00 0.0 0.0 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 V LSR (km/s) V LSR (km/s) V LSR (km/s) V LSR (km/s) CR3/NR3 CR4/NR4 Antenna Temperature T A (K) Antenna Temperature T A (K) NH 3 (1,1) 0.2 NH 3 (1,1) CO(1-0) CO(1-0) 0.08 10.0 10.0 0.1 0.04 5.0 5.0 0.0 0.00 0.0 0.0 0.2 13 CO(1-0) 2.0 13 CO(1-0) 3.0 NH 3 (2,2) NH 3 (2,2) 0.04 2.0 0.1 0.02 1.0 1.0 0.0 0.00 0.0 0.0 0.8 0.04 CS(1-0) NH 3 (3,3) 0.08 CS(1-0) NH 3 (3,3) 0.2 0.02 0.4 0.04 0.1 0.00 0.00 0.0 0.0 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 V LSR (km/s) V LSR (km/s) V LSR (km/s) V LSR (km/s) CR6/NR6 CR5/NR5 Antenna Temperature T A (K) Antenna Temperature T A (K) 10.0 NH 3 (1,1) 0.08 NH 3 (1,1) 0.02 CO(1-0) CO(1-0) 6.0 0.04 4.0 0.00 5.0 2.0 0.00 0.0 0.0 1.5 1.5 13 CO(1-0) 13 CO(1-0) 0.02 NH 3 (2,2) NH 3 (2,2) 0.05 1.0 1.0 0.00 0.5 0.00 0.5 0.0 0.0 0.3 0.02 CS(1-0) NH 3 (3,3) CS(1-0) NH 3 (3,3) 0.04 0.1 0.2 0.02 0.00 0.1 0.00 0.0 0.0 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 V LSR (km/s) V LSR (km/s) V LSR (km/s) V LSR (km/s)

  7. Region CR1 in detail Integrated intensity in K (km/s) in CR1 DEC NH3(1,1) 40-60 km/s C7 -13.15 CS(1-0) between 40-60 km/s CS (1-0) 40-60 km/s NH 3 (1,1) between 40-60 km/s H62alpha 45-65 km/s C3 H62 α between 45-65 km/s CR1 CR1 -13.20 C2 UC HII g018.15-0.29 C6 -13.25 C4 C1 C9 -13.30 C5 C8 -13.35 P1 RA 18.427 18.420 18.413 -13.40 ◮ Overall H 2 mass using X CO =2.0 × 10 20 cm − 2 (K km/s) − 1 ∼ 1 × 10 5 M ⊙ with an average of ∼ 10 2 cm − 3 ◮ The CS and NH 3 estimation of H 2 Mass reveals ∼ 10 4 M ⊙ , corresponding with the H 2 mass estimated by Roman-Duval (2010). ◮ Some spatial separation between CS and NH 3

  8. CR1 Dynamic studies CR1 CR1 CS(1-0) integrated intensity CS(1-0)x4 13 CO(1-0) -13.20 4.0 1 2 3 4 5 6 map. Box Averaged spectra 3.0 2.0 overlaying the map. The -13.22 1.0 13CO(1-0) 0.0 white dashed ellipse 4.0 7 8 9 10 11 12 3.0 indicates CR1. -13.24 2.0 1.0 DEC CS(1-0) 0.0 4.0 13 14 15 16 17 18 -13.26 Broad CS (1-0) and 3.0 Antenna Temperature T A (K) 2.0 13 CO(1-0) emission (e.g 1.0 0.0 -13.28 box 21). 4.0 19 20 21 22 23 24 3.0 2.0 45-50 km/s 1.0 -13.30 0.0 50-55km/s Emission varies greatly, 4.0 25 26 27 28 29 30 3.0 55-60km/s changing from a single peak 2.0 -13.32 1.0 at v lsr ∼ 50 km/s (center of 0.0 4.0 31 32 33 34 35 36 CR1) to double peak at 3.0 -13.34 2.0 ∼ 46-54 km/s (e.g box 34 1.0 0.0 and 23) r g b37 4.0 38 39 40 41 42 -13.36 3.0 2.0 P1 1.0 0.0 RA 45 50 55 60 45 50 55 60 45 50 55 60 45 50 55 60 45 50 55 60 45 50 55 60 18.426 18.424 18.422 18.420 18.418 18.416 18.414 V LSR (km/s)

  9. Spitzer CR1 indicates perturbation either coming from: -12.60 DEC → SNR Spitzer 5.8 micro CR4 Spitzer 8 micro → PWN -12.80 Spitzer 24 micro → Shock from stars in the star-forming region ( e.g -13.00 UCHII 18.15 -0.29 box 17 ) CR2 P2 adding perturbations in its CR3 vicinity -13.20 CR1 20 → Cloud-Cloud collision. UC HII g018.15-0.29 CR5 -13.40 10 P1 RA -13.60 18.460 18.450 18.440 18.430 18.420 18.410 18.400 18.390

  10. Supernova shock? DEC DEC DEC (°) 55 160 n0=0.001 cm -3 13 CO(1−0) -12.7 v cent map CR4 CR4 CR4 54 140 2 -12.8 53 120 -12.9 52 1.5 100 r SNR (parsec) θ (degree) -13.0 51 80 P2 P2 P2 CR2 CR2 CR2 1 -13.1 50 60 CR3 CR3 CR3 49 -13.2 40 0.5 CR5 CR5 CR5 48 -13.3 20 CR1 CR1 CR1 47 0 0 -13.4 5000 10000 15000 20000 25000 30000 35000 40000 45000 46 time(yr) -13.5 30 RA RA RA n1=100 cm -3 (h) P1 P1 P1 n1=10 cm -3 18.46 18.45 18.44 18.43 18.42 18.41 18.40 45 0.4 200 25 -11.00 189 CR1 n2=400 cm -3 0.3 DEC 20 (°) 178 GMC n1 -12.00 r SNR (parsec) P2 θ (degree) 15 167 HESS J1826-130 0.2 -13.00 CR1 156 n0=0.001 cm -3 10 R P1 -14.00 HESS J1825-137 0.1 145 5 CR6 134 -15.00 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 123 time(yr) -16.00 112 -17.00 RA (h) 101 18.65 18.60 18.55 18.50 18.45 18.40 18.35 18.30 18.25 18.20 18.15 90

  11. γ -ray prediction 1 Scenario 1 ◮ Assume all high energy particles are confined inside the SN shock. � 2 − α ◮ L 100 GeV = R 2 � η pp E SN 2¯ n 100 GeV CR 1 4 d 2 4 α K 1 − α τ pp m p κπ d 2 CR 1 π ◮ Assuming d CR1 =20pc and R CR1 =9pc n=400 cm − 3 and α =2.2 � − 2 � � n d CR 1 ◮ L 100 GeV = 7 . 3 × 10 − 11 � erg cm 2 s − 1 400 cm − 3 28 pc CR1 L 100 GeV =2.12 × 10 − 12 erg r CR1 cm − 2 s − 1 .for HESS J1825-137 d center: WAY TOO HIGH CR1 x SN origin

  12. γ -ray prediction 2 Scenario 1 ◮ Assume all high energy particles escaped the high energy particles escaped the SN shock. � � E B ◮ D ( E ) = D 0 10 GeV / 3 µ G � − 1 / 4 � B ◮ r 100 GeV ∼ 86 pc 3 µ G ◮ L > 100 GeV ∼ 1 . 1 × 10 − 13 erg cm − 2 s − 1 CR1 Uncertainties regarding the isotropic diffusion of TeV par- SN shock ticle and how much particles escaped the SNR x escaping SN origin CR

  13. HESS J1026-582 Antenna Temperature T A (K) 0.4 CS1 0.2 4e+03 -0.20 0.0 CS8 HI 21cm integrated intensity 3.9e+03 0.4 CS2 v =0−30km/s lsr 0.2 -0.30 3.7e+03 0.0 CS7 0.40 CS3 3.6e+03 0.20 -0.40 CS4 0.00 SiO1 3.4e+03 CS6 HESS J1023-575 -30 -10 10 30 3.3e+03 -0.50 Antenna Temperature T A (K) 0.4 CS4 CS5 0.2 3.1e+03 0.0 CS2 -0.60 3e+03 CS3 0.4 CS5 CS1 CS1 SiO2 SiO3 0.2 0.0 2.8e+03 -0.70 HESS J1026-582 0.40 CS6 2.7e+03 Spitzer 8 micro MOST 843 micro 0.20 284.80 284.70 284.60 284.50 284.40 284.30 0.00 2.5e+03 Antenna Temperature T A (K) Antenna Temperature T A (K) 0.4 SiO1 0.4 CS7 -30 -10 10 30 0.2 0.2 0.0 0.0 0.4 SiO2 0.4 CS8 0.2 0.2 0.0 0.0 0.40 0.40 SiO3 CS9 0.20 0.20 0.00 0.00 -30 -10 10 30 -30 -10 10 30

Recommend


More recommend