multiobjective parameter optimization of elliptic pdes
play

Multiobjective Parameter Optimization of Elliptic PDEs using the - PowerPoint PPT Presentation

Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization


  1. Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz, 17th October 2019 S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 1 / 18

  2. Problem Formulation Consider the multiobjective parameter optimization problem   J 1 ( u; y ) . . . s.t. (MPOP) min e ( y; u ) = 0 ;   u;y J k ( u; y ) where J i : U � Y ! R , i = 1 ; :::; k , are the objective functions , - U = R n is the parameter space , Y is the state space , - e is a PDE called the state equation , which is uniquely solvable for every u 2 U . - The parameter-to-state mapping is given by S : U ! Y . We write J i ( u ) = J i ( u; S ( u )) . - S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 2 / 18

  3. Problem Formulation Consider the multiobjective parameter optimization problem     J 1 ( u ) J 1 ( u; S ( u )) . . . .  = . .  ; (MPOP) min   u J k ( u ) J k ( u; S ( u )) where J i : U � Y ! R , i = 1 ; :::; k , are the objective functions , - U = R n is the parameter space , Y is the state space , - e is a PDE called the state equation , which is uniquely solvable for every u 2 U . - The parameter-to-state mapping is given by S : U ! Y . We write J i ( u ) = J i ( u; S ( u )) . - S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 2 / 18

  4. How can we solve (MPOP) (numerically)? - How can approximation errors induced by using model order reduction be - handled? Problem Formulation Consider the multiobjective parameter optimization problem     J 1 ( u ) J 1 ( u; S ( u )) . . . .  = . .  ; (MPOP) min   u J k ( u ) J k ( u; S ( u )) where J i : U � Y ! R , i = 1 ; :::; k , are the objective functions , - U = R n is the parameter space , Y is the state space , - e is a PDE called the state equation , which is uniquely solvable for every u 2 U . - The parameter-to-state mapping is given by S : U ! Y . We write J i ( u ) = J i ( u; S ( u )) . - Questions: What is a meaningful optimality concept? (Problem: No total order on R k ) - S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 2 / 18

  5. How can approximation errors induced by using model order reduction be - handled? Problem Formulation Consider the multiobjective parameter optimization problem     J 1 ( u ) J 1 ( u; S ( u )) . . . .  = . .  ; (MPOP) min   u J k ( u ) J k ( u; S ( u )) where J i : U � Y ! R , i = 1 ; :::; k , are the objective functions , - U = R n is the parameter space , Y is the state space , - e is a PDE called the state equation , which is uniquely solvable for every u 2 U . - The parameter-to-state mapping is given by S : U ! Y . We write J i ( u ) = J i ( u; S ( u )) . - Questions: What is a meaningful optimality concept? (Problem: No total order on R k ) - How can we solve (MPOP) (numerically)? - S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 2 / 18

  6. Problem Formulation Consider the multiobjective parameter optimization problem  J r   J 1 ( u; S r ( u ))  1 ( u ) . . . .  = . .  ; (MPOP) min   u J r J k ( u; S r ( u )) k ( u ) where J i : U � Y ! R , i = 1 ; :::; k , are the objective functions , - U = R n is the parameter space , Y is the state space , - e is a PDE called the state equation , which is uniquely solvable for every u 2 U . - The parameter-to-state mapping is given by S : U ! Y . We write J i ( u ) = J i ( u; S ( u )) . - Questions: What is a meaningful optimality concept? (Problem: No total order on R k ) - How can we solve (MPOP) (numerically)? - How can approximation errors induced by using model order reduction be - handled? S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 2 / 18

  7. Multiobjective Parameter Optimization of PDEs Pareto Optimality Definition: Pareto optimality A parameter � u 2 U is called Pareto optimal for (MPOP), if there is no other para- meter u 2 U with J i ( u ) � J i (� 8 i 2 f 1 ; :::; k g ; u ) for at least one l 2 f 1 ; :::; k g : J l ( u ) < J l (� u ) ( k u � ( � 1 ; � 1) > k 2 ) Example: J : R 2 ! R 2 ; u 7! 2 : k u � (1 ; 1) > k 2 2 S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 3 / 18

  8. Multiobjective Parameter Optimization of PDEs Pareto Optimality Definition: Pareto optimality A parameter � u 2 U is called Pareto optimal for (MPOP), if there is no other para- meter u 2 U with J i ( u ) � J i (� 8 i 2 f 1 ; :::; k g ; u ) for at least one l 2 f 1 ; :::; k g : J l ( u ) < J l (� u ) Goal: Find the Pareto set of (MPOP), i.e., the set of all Pareto optimal parameters of (MPOP). S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 3 / 18

  9. Definition: Pareto criticality If u and � satisfy (KKT), then u is Pareto critical with KKT vec- tor � . The set P c of all Pareto critical points is the Pareto critical set . Multiobjective Parameter Optimization of PDEs Optimality conditions Let J be differentiable. Theorem: If u is Pareto optimal, then there is some � 2 ( R � 0 ) k with ∑ k i =1 � i = 1 such that k ∑ (KKT) � i r J i ( u ) = DJ ( u ) > � = 0 : i =1 S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 4 / 18

  10. Multiobjective Parameter Optimization of PDEs Optimality conditions Let J be differentiable. Theorem: If u is Pareto optimal, then there is some � 2 ( R � 0 ) k with ∑ k i =1 � i = 1 such that k ∑ (KKT) � i r J i ( u ) = DJ ( u ) > � = 0 : i =1 Definition: Pareto criticality If u and � satisfy (KKT), then u is Pareto critical with KKT vec- tor � . The set P c of all Pareto critical points is the Pareto critical set . S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 4 / 18

  11. Continuation Method with Exact Gradients Continuation Method via Boxes We use a set-oriented continuation method to compute the Pareto critical set. (see [Hillermeier, 2001]) Divide the variable space into boxes with radius r - B ( r ) := f [ � r; r ] n + (2 i 1 r; : : : ; 2 i n r ) T j ( i 1 ; : : : ; i n ) 2 Z n g : Compute B c ( r ) := f B 2 B ( r ) j B \ P c 6 = ;g . - � 2 It holds B \ P c 6 = ; ( � � 2 = 0 . - � DJ ( u ) T � ) min u 2 B;� 2 � k If a box B 2 B ( r ) with B \ P c 6 = ; is found, use the tangent space of P c to get - candidates for neighbouring boxes containing Pareto critical points. S. Banholzer, B. Gebken, M. Dellnitz, S. Peitz, S. Volkwein (University of Konstanz / Paderborn University Workshop: New trends in PDE constrained optimization RICAM Linz) Multiobjective Parameter Optimization of Elliptic PDEs using the Reduced Basis Method 17th October 2019 5 / 18

Recommend


More recommend