Multi-wavelength ISM diagnostics in high redshift galaxies Alexandra Pope (UMass Amherst) Transformational Science in the ALMA Era: Multi-Wavelength Studies of Galaxy Evolution Conference Charlottesville, VA – August 5, 2014 Large Millimeter Telescope
Dust-obscured activity dominates the build-up of stars and black holes in galaxies Using data from Bouwens+2009 and Murphy+2011
Dust-obscured activity dominates the build-up of stars and nd b bla lack ho k hole les in galaxies Star formation : black BH accretion : blue , green , red Madau & Dickinson 2014
More molecular gas available during the peak epoch of dusty star formation and black hole growth 10 9 Sargent et al. (2013) � (M star ) � (M mol ) [M sun Mpc -3 ] Obreschkow & Rawlings (2009a,b) Lagos et al. (2011) 10 8 � (HI) BzK BX/BM Keres et al. (2003) � 10 7 LBG 0 1 2 3 4 5 6 7 redshift z Carilli & Walter 2013
How do we probe the interstellar medium (gas and dust) in high redshift galaxies? Herschel Circa 2014: Well sampled Luminosity density (WHz -1 ) spectral energy distribution (SED) for high redshift Ultra Luminous Infrared Galaxies MIPS SCUBA (ULIRGs, SFR ≥ ~100 M sun /yr) LMT IRS VLA IRAC ALMA HST Rest Wavelength ( µ m)
How do we probe the interstellar medium (gas and dust) in high redshift galaxies? Herschel Luminosity density (WHz -1 ) • Spitzer mid-IR spectroscopy is sensitive to the radiation MIPS heating the dust : SF or AGN SCUBA LMT • Herschel imaging samples the peak of the dust IRS emission: dust temperatures VLA IRAC • Millimeter spectroscopy (e.g. ALMA, LMT) probes the ALMA molecular gas reservoir HST Rest Wavelength ( µ m)
Large Millimeter Telescope (LMT) o Currently operating in Early Science mode as a 32.5m telescope o 50m millimeter telescope in Mexico o Early science instrumentation: o 15,000 ft: Excellent mm site - AzTEC 1.1mm camera - 3mm Redshift Search Receiver (RSR) o Owned by UMass and Mexico o 50 m LMT [~2016] = 1/3 the collecting area of ALMA Time lapse video from June 2013, courtesy of James Lowenthal +19 deg. latitude
How can we probe the interstellar medium (gas and dust) in high redshift galaxies? Herschel Luminosity density (WHz -1 ) • Spitzer mid-IR spectroscopy is sensitive to the radiation MIPS heating the dust : SF or AGN SCUBA LMT • Herschel imaging samples Goal: Understand how dusty star formation and black the peak of the dust IRS emission: dust temperatures hole growth proceeds during the peak epoch VLA IRAC • Millimeter spectroscopy (e.g. ALMA, LMT) probes the ALMA Approach: Link multi-wavelength diagnostics of the ISM molecular gas reservoir HST in high redshift dusty galaxies Rest Wavelength ( µ m)
Session: Star F Forma mation a n and nd A Assemb mbly o ly of Ga Gala laxies ! How is the S-K law “law” affected by different measurement limitations or conversion factors (from tracer molecules or emission / absorption lines to amounts of gas and SFR)? ! Are the measurements from different tracers of ISM and SF consistent? ! How do galaxies grow ( evolve ) over cosmic time?
Tracers of the ISM and star formation PAH H 2 CO Molecular cloud Hollenbach & Tielens 1997
Decomposing Spitzer mid-IR spectra into two main components: 1. Star formation : 2. Active Galactic Nuclei: Polycyclic aromatic hydrocarbons (PAH) Power-law + extinction emission lines + extinction
SED fitting with Spitzer /IRS + Herschel AGN dominated (mid-IR) SF dominated (mid-IR) Warm dust (~60K) Warm dust (~100K) Cool dust (~30K) Cool dust (~30K) Kirkpatrick, Pope, et al. 2012
SED fitting with Spitzer /IRS + Herschel AGN dominated (mid-IR) L IR,cold /L IR,total = 0.2-0.5 SFR = (0.2-0.5) * 1.5e-10 * L IR,total Warm dust (~100K) How does this affect the Schmidt-Kennicutt relation? Cool dust (~30K) Kirkpatrick, Pope, et al. 2012
Linking molecular gas and star formation at high redshift: Integrated Schmidt-Kennicutt relation Daddi et al. 2010; see also Genzel et al. 2010 Carilli & Walter 2013
Sample: Intermediate redshift AGN and SF galaxies 5MUSES survey 1.0 Star Forming Galaxy Star Forming Galaxy Composite Composite AGN AGN Main Sequence Main Sequence - z~0.2 Starburst Starburst 0.5 - Spitzer /IRS spectra + log sSFR (Gyr -1 ) Herschel imaging = 0.0 decompose IR SED into -0.5 SF and AGN components => SFR(L IR,SF ) -1.0 - From SSFR: -1.5 14 Main Sequence 10 Starbursts -2.0 0.0 0.1 0.2 0.3 0.0 z CO Fraction Kirkpatrick, Pope, et al., 2014, ApJ submitted
Observations: New LMT/RSR CO(1-0) data for AGN and SF galaxies Kirkpatrick, Pope, et al., 2014, ApJ submitted
“AGN-corrected” integrated S-K relation Star Forming Galaxy Star Forming Galaxy 2.5 Composite Composite AGN AGN Main Sequence Main Sequence Starburst Starburst Starbursts 2.0 CO SF / L � log L IR 1.5 SFGs 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 f AGN,IR Fraction Kirkpatrick, Pope, et al., 2014, ApJ submitted
Polycyclic Aromatic Hydrocarbon (PAH) emission as a tracer of star formation PAH H 2 CO Molecular cloud Hollenbach & Tielens 1997
Enhanced PAH emission at high redshift 0.010 L PAH,6.2 /L IR 5MUSES IR galaxies (z~0.08) Local ULIRGs (z~0.07) 24 µ m-selected (z=1-3) 70 µ m-selected (z~1) BzKs (z~1.5) SMGs (z~2) 0.001 10 10 10 11 10 12 10 13 10 Pope et al. 2013 L IR (L O • )
Enhanced PAH emission at high redshift ... similar to enhanced [CII] emission? 0.010 L PAH,6.2 /L IR 5MUSES IR galaxies (z~0.08) Local ULIRGs (z~0.07) 24 µ m-selected (z=1-3) 70 µ m-selected (z~1) BzKs (z~1.5) SMGs (z~2) Graciá-Carpio et al. 2011 0.001 10 10 10 11 10 12 10 13 10 L IR (L O • ) Pope et al. 2013
Enhanced PAH emission at high redshift ... similar to enhanced [CII] emission? 0.010 L PAH,6.2 /L IR 5MUSES IR galaxies (z~0.08) Local ULIRGs (z~0.07) 24 µ m-selected (z=1-3) Graciá-Carpio et al. 2011 70 µ m-selected (z~1) BzKs (z~1.5) SMGs (z~2) 0.001 10 10 10 11 10 12 10 13 10 L IR (L O • ) Pope et al. 2013
Link between enhanced PAH emission at high redshift and more molecular gas 0.010 L PAH,6.2 /L IR 5MUSES IR galaxies (z~0.08) Local ULIRGs (z~0.07) 24 µ m-selected (z=1-3) 70 µ m-selected (z~1) BzKs (z~1.5) SMGs (z~2) 0.001 10 10 10 11 10 12 10 13 10 100 • / (K km s -1 pc 2 )] L IR (L O • ) L IR /L’ CO(1-0) [L O Pope et al. 2013
Link between enhanced PAH emission at high redshift and more molecular gas 0.010 L PAH,6.2 /L IR 5MUSES IR galaxies (z~0.08) Local ULIRGs (z~0.07) 24 µ m-selected (z=1-3) 70 µ m-selected (z~1) BzKs (z~1.5) SMGs (z~2) 0.001 10 10 10 11 10 12 10 13 10 100 • / (K km s -1 pc 2 )] L IR (L O • ) L IR /L’ CO(1-0) [L O Pope et al. 2013; Kirkpatrick, Pope, et al., 2014, ApJ submitted
Link between enhanced PAH emission at high redshift and more molecular gas Add [CII] 0.010 to the mix L PAH,6.2 /L IR ALMA! 5MUSES IR galaxies (z~0.08) Local ULIRGs (z~0.07) 24 µ m-selected (z=1-3) 70 µ m-selected (z~1) BzKs (z~1.5) SMGs (z~2) 0.001 10 10 10 11 10 12 10 13 10 100 10 • / (K km s -1 pc 2 )] L IR (L O • ) L IR /L’ CO(1-0) [L O Pope et al. 2013 Hollenbach & Tielens 1997
Session: Star F Forma mation a n and nd A Assemb mbly o ly of Ga Gala laxies ! How is the S-K law “law” affected by different measurement limitations or conversion factors (from tracer molecules or emission / absorption lines to amounts of gas and SFR)? ! Are the measurements from different tracers of ISM and SF consistent? ! How do galaxies grow ( evolve ) over cosmic time?
Session: Star F Forma mation a n and nd A Assemb mbly o ly of Ga Gala laxies ! How is the S-K law “law” affected by different measurement limitations or conversion factors (from tracer molecules or emission / absorption lines to amounts of gas and SFR)? Many LIRGs/ULIRGs show concurrent black hole growth (50-80% of L IR ). Decompose IR SED to get the only the L IR,SF heated by SF. LMT pilot study: o Reduces the scatter in S-K o Brings more galaxies down onto the normal galaxy sequence
Session: Star F Forma mation a n and nd A Assemb mbly o ly of Ga Gala laxies ! Are the measurements from different tracers of ISM and SF consistent? How do galaxies grow ( evolve ) over cosmic time? o Strong PAH emission is much more prevalent at high redshift compared to locally o Enhanced PAH emission is linked to the increased molecular gas in high redshift galaxies o Future: add links to [CII] and other ISM tracers using ALMA
EARLY SCIENCE WITH THE LARGE MILLIMETER TELESCOPE: EXPLORING THE EFFECT OF AGN ACTIVITY ON THE RELATIONSHIPS BETWEEN MOLECULAR GAS, DUST, AND STAR FORMATION Allison Kirkpatrick 1 , Alexandra Pope 1 , Itziar Aretxaga 2 , Lee Armus 3 , Daniela Calzetti 1 , George Helou 4 , na 2 , Gopal Narayanan 1 , F. Peter Schloerb 1 , Yong Shi 5 , Olga Vega 2 , Min Yun 1 Alfredo Monta˜ Submitted to ApJ July 12, 2014 Draft version July 12, 2014 Synergy between ALMA and LMT 50 m LMT [~2016] = 1/3 the collecting area of ALMA Wide field mm • mapping Wide bandwidth • CO redshift surveys
Recommend
More recommend