multi wavelength agn spectra and modeling
play

Multi-wavelength AGN spectra and modeling Paolo Giommi ASI Radio - PowerPoint PPT Presentation

Multi-wavelength AGN spectra and modeling Paolo Giommi ASI Radio Microwave R a d i o G a l a x i e s n o n - t h e r m a l e m i s s i o n Optical Stars+Galaxies (black body) N N o o n n - - t t h h


  1. Multi-wavelength AGN spectra and modeling Paolo Giommi ASI

  2. Radio Microwave R a d i o G a l a x i e s n o n - t h e r m a l e m i s s i o n Optical Stars+Galaxies (black body) N N o o n n - - t t h h e e AP-AGN (accretion onto SMBH) r r m m X-Ray a a l l e e m m i i s s s s i i o o n n γ -Ray TeV

  3. AGN Types • Accretion Dominated AGN (AD-AGN) Radio-quiet QSO Seyfert galaxies Obscured AGN about 90% of AGN • Non-Thermal Radiation Dominated AGN (NT-AGN) Blazars (FSRQ + BLLACS) Misdirected NT-AGN (Radio Galaxies, SSRQs) about 10% of AGN

  4. Blazars • AGN • Highly variable at all frequencies • Highly polarized • Radio core dominance • Superluminal speeds Observed at a small angle to the jet and therefore rare AGN : 5-8% of all AGN (but only at optical or X-ray frequencies!) Blazars are the dominant population of extragalactic point sources at • Gamma-ray • TeV • Microwave frequencies

  5. Normally the electromagnetic emission from blazars is assumed to be due to the Synchrotron-Self Compton mechanism (SSC) or SSC+External Component of a population of electrons in a jet of material that is moving at relativistic speed at a small angle with respect to the observer.

  6. γ -ray Radio γ -ray TeV Radio Microwave Optical X-ray TeV Microwave Optical X-ray LBL Objects LBL Objects UHBL Objects ? HBL Objects HBL Objects

  7. Swift/AGILE ToO observations of S5 0716+714 (Oct-Nov 2007) Giommi et al. 2008, A&A in press, arXiv:0806.1855

  8. Swift observations of 3C454.3 during the giant flare of May 2005 Giommi et al. 2006, A&A 456, 911

  9. TeV dectected BL Lacs Tramacere et al. 2006 XRT data UVOT data BeppoSAX SED of MRK 421 in 2005: large SED of 1H1100 – 230 observed on changes in luminosity and peak 30 June (blue) and 13 July 2005 energy. (red). BeppoSAX 1997 and 1998 data are shown as open symbols.

  10. TeV dectected BL Lacs SED of 1ES 1553+113 observed on SED of 1ES 1959+650 (19 April 20 April (red), 6 Octobe (blue), 2005) and 8 October 2005 (green)

  11. MKN421 in a bright state: the BeppoSAX observation of May 2000 Massaro, Perri, Giommi, Nesci, 2004 A&A May 1999

  12. Log parabolic photon spectra can be explained as due to Synchrotron radiation from a log-parabolic particle distribution (Massaro et al. 2004a A&A 413, 489, 2004b, A&A 422,103) SSC from a log parabolic electron distribution (Massaro et al. 2005, in press)

  13. • Spectral curvature observed around the Synchrotron peak is due to intrinsic curvature of emitting particle distribution • SSC of a particle distribution distributed as a Log-Parabola implies intrinsic curvature around Inverse Compton peak leaving little room for curvature resulting from EBL absorption • Absorption due to EBL could be significantly lower than previously thought • Supported also by – Aharonian et al. 2005 A&A 437, 395 Cut off energy in TeV spectrum of MKN421 (3.1TeV) lower than that of MKN501 (6.2 TeV), but redshift is very similar – Aharonian et al. 2005 astro/ph 0508073 HESS detection of the “high redshift” Blazars: H2356-309 (z=0.165) and 1ES1101-232

  14. Swift observation of MKN421 in 2006 Tramacere et al. 2008 in preparation

  15. WMAP bright foreground source catalog 208 bright sources, of which WMAP CMB fluctuation map • 140 FSRQs • 23 BL Lacs • 13 Radio galaxies • 5 Steep Spectrum QSOs • 2 starburst galaxies • 2 planetary nebule • 17 unidentified • 6 without radio counterpart (probably spurious) The vast majority of bright WMAP foreground sources are Blazars

  16. Radio Galaxy PKS 0518-45 Radio Galaxy 3C 111 Fiocchi, Grandi et al. in preparation

  17. Boomerang 90 GHz CMB MAP De Bernardis et al. 2000

  18. PMN J0419-3010 PKS 0405-385 PKS 0521-365 PKS 0422-380 PKS 0537-441 PKS 0438-436 PKS 0454-463 PKS 0513-491l PKS 0539-543 PKS 0549-575 PKS 0252-549 PKS 0506-61 [Giommi & Colafrancesco 2003]

  19. 1RXS0531-3533 PKS 0548-317 PMN J0419-3010 PKS 0548-322 PKS 0435 -300 PKS 0534-340 1RXS0608-3041 PKS 0602-31 PKS 0439-331 PMN0510-3533 PKS 0610-316 PKS 0613-312 PKS 0448-392 PKS 0426-380 WGA 0428.2-3805 WGA 0624-3230 1RXS0432-3506 PMN J0525-3343 PKS 0443-387 PKS 0402-362 1RXS0606-3447 PMNJ0529-3555 PKS 0618-37 PKS 0532-378 1RXS0557-3728 PKS 0405-385 PKS 0558-396 PMN 0422-3844 PKS 0521-365 PKS 0422-380 1RXS0543-3956 WGA 0424-3849 PKS 0537-441 PKS 0524-460 1RXS0502-4221 PKS 0622-441 Pictor A PKS 0427-435 PKS 0646-437 RGal PKS 0518-45 PKS 0438-436 PKS 0514-459 PKS 0454-463 RXS J 0606-4730 PKS 0355-483 PKS 0524-485 PKS 0558-504 PKS 0257-51 PKS 0513-491l PKS 0431-512 WGA 0631-5404 PKS 0446-519 PKS 0452-515 PKS 0539-543 PKS 0549-575 PKS 0252-549 WGA 0533-5817 PKS 0506-61 [Giommi & Colafrancesco 2003]

  20. WMAP SEDs WMAP 150 = Pictor A WMAP 190 = PKS 2153-69 WMAP 047 = CTA 102 WMAP 035 = 3C345 WMAP 108 = 3C120 WMAP 067 = 3C371 WMAP 139 = PKS 0521-365 Nuclear compact radio emission

  21. The Blazar LogN-LogS

  22. Giommi & Colafrancesco 2003

  23. 2007 A&A, 468, 571 All microwave selected blazars are X-ray sources.

  24. From µ − wave flux to X-rays and vice-versa α µ x = − log( f 94 GHz / f 1 keV ) log( ν 94 GHz / ν 1 keV ) = − log( f 94 GHz / f 1 keV ) 6.41 Number of WMAP sources detected at 94 GHz < α µ x > = -1.07 f 94GHz = f 1keV • 10 6.41 < α µ x > σ = 0.08 f 94GHz = 10 6.85 • f 1keV f 94GHz = 7.1 • 10 6 f 1keV Effect of ± 3 variability σ f 94GHz = 10 0.08 ⋅ 6.41 • f 94GHz σ f 94GHz ~ 3 • f 94GHz α µ x Microwave fluxes can be estimated from X-ray flux to within a factor ≤ 3 LBL Blazar contribution to soft CXB: 4%, total (LBL+HBL 12%)

  25. From µ -wave to X-rays α µ x = − 1.07 Fixed at µ -waves

  26. Hard-Xray/Soft Gamma-Ray Cosmic Background

  27. Contribution to the X and γ -ray backgrounds

  28. Radio — γ -ray flux ratio & duty cycle log( F / F ) µ γ Define a slope/trend: α ≡ µ γ log( / ) ν ν µ γ f γ - source /< γ − background > Blazar Name α µ γ Duty cycle ( α µ γ background =-0.994) (%) 6.9 BZQ J0204+1514 -0.892 14.5 6.0 BZU J0210-5101 -0.887 16.6 BZB J0339-0146 -0.902 11.2 8.9 BZQ J0423-0120 -0.907 9.7 10.3 BZQ J0455-4615 -0.913 8.3 12.0 BZQ J0457-2324 -0.908 9.6 10.4 BZU J0522-3627 -0.926 6.0 16.7 BZB J0538-4405 -0.892 14.4 6.9 BZQ J1256-0547 (3C -0.870 25.5 3.9 279)

  29. Max EGRET Min EGRET

  30. A ~10 mJy Blazar 3C 279 scaled down by a factor 1000 (1milli 3C279) GLAST LAT Swift BAT Swift XRT Planck LFI+HFI Swift UVOT

Recommend


More recommend