MOTOR LEARNING – IMAGINARY TRAINING NATALIE MRACHACZ-KERSTING
USING A BRAIN-COMPUTER-INTERFACE FOR MOTOR LEARNING NATALIE MRACHACZ-KERSTING
Motor Learning involves neuroplasticity The ability of the nervous system to reorganize neural pathways based on: learning new skills recovery from injury artificial induction
Mechanisms of neuroplasticity • Persistent changes in synaptic efficacy proposed by Hebb, 1949; review refer to Sanes & Donoghue, 2000; Cook & Bliss, 2006 • D.O. Hebb and synaptic plasticity: • Synaptic terminals strengthened by correlated activity will be retained or sprout new branches. • Synaptic terminals that are persistently weakened by non- correlated activity will eventually loose their hold on the post-synaptic cell.
Paired Associative Stimulation (PAS) in humans • Effects following PAS are: • dependent on the timing between the two stimuli • specific to the target muscle • rapidly evolving • persist upon cessation of the stimulation period For a comprehensive review refer to Ziemann et al. (2008) Stefan et al. (2000)
Paired Associative Stimulation (PAS) in humans Professor Janne Avela Dr Susanne Kumpulainen
PAS requires two artificial stimuli: TMS and ES
The movement related cortical potential as part of PAS Goettingen, DE Canada Denmark Professor Dario Farina Dr. Ning Jiang Dr. Kim Dremstrup
Brain Computer Interfaces (BCI) Applications: • Communication • Gaming • Rehabilitation Signal Acquisition: • Invasive (ECoG, intra- cortical, etc.) • Non-invasive (EEG) Modes: • Synchronous/cued • Asynchronous/self-paced Control Brain Signals: • ERD/ERS, P300 • MRCP (CNV or Bereitschaftspotential) [* adapted from Wolpaw et al., 2012] • etc.
The movement related cortical potential as part of PAS
The movement related cortical potential Imaginary movements Real movements do Nascimento et al. 2005
The movement related cortical potential as part of PAS
Associativit y Mrachacz-Kersting et al. (2012) J Physiol
Associativity and Specificity Mrachacz-Kersting et al. (2012) J Physiol
Chronic stroke patients Mrachacz-Kersting et al. J Neurophysiol (2016)
Chronic stroke patients – BCI associative intervention 1200 pre-intervetion post-intervention 1000 30 min post-intervention TA p-p MEP amplitude [ V] 800 600 400 200 0 45 50 55 60 65 70 TMS intensity [%S.O.] Mrachacz-Kersting et al. (2016) J Neurophysiol
Chronic stroke patients - BCI associative intervention 1200 10 m walk test: pre-intervetion Pre: 15.5 s post-intervention 1000 30 min post-intervention TA p-p MEP amplitude [ V] Post 10.5 s 800 Foot Tap Frequ: 600 Pre: 2.31 Hz Post: 3.42 Hz 400 Finger Tap Frequ: 200 Pre: 3.17 Hz Post: 3.18 Hz 0 45 50 55 60 65 70 TMS intensity [%S.O.] Mrachacz-Kersting et al. (2016) J Neurophysiol
Chronic stroke patients – BCI non-associative intervention 1600 pre-intervetion 1400 post-intervention 30 min post-intervention TA p-p MEP amplitude [ V] 1200 1000 800 600 400 200 0 40 45 50 55 60 65 70 75 TMS intensity [%S.O.] Mrachacz-Kersting et al. (2016) J Neurophysiol
Chronic stroke patients - BCI non-associative intervention 1600 10 m walk test: pre-intervetion 1400 Pre: 8.03 s post-intervention 30 min post-intervention TA p-p MEP amplitude [ V] Post 8.05 s 1200 1000 Foot Tap Frequ: 800 Pre: 4.03 Hz Post: 3.8 Hz 600 400 Finger Tap Frequ: 200 Pre: 0.53 Hz Post: 0.53 Hz 0 40 45 50 55 60 65 70 75 TMS intensity [%S.O.] Mrachacz-Kersting et al. (2016) J Neurophysiol
Acute stroke patients 1000 Day 1 pre-intervetion post-intervention 800 30 min post-intervention TA p-p MEP amplitude [ V] 600 400 200 0 40 45 50 55 60 65 70 TMS intensity [%S.O.]
Acute stroke patients 1000 Day 6 pre-intervetion post-intervention MRCP 800 TA p-p MEP amplitude [ V] 30 min post-intervention 600 400 200 0 35 40 45 50 55 60 65 TMS intensity [%S.O.]
Acute stroke patients 1000 Day 12 pre-intervetion MRCP post-intervention 800 30 min post-intervention TA p-p MEP amplitude [ V] 600 400 200 0 35 40 45 50 55 60 65 TMS intensity [%S.O.]
Acute stroke patients 1000 Day 12 pre-intervetion post-intervention 800 10 m walk test: 30 min post-intervention TA p-p MEP amplitude [ V] Pre: 8.47 s 600 Post 5.52 s 400 LE-FM: Pre: 24/34 200 Post: 33/34 0 35 40 45 50 55 60 65 TMS intensity [%S.O.]
Acute stroke patients 1000 300 pre-intervetion pre-intervetion post-intervention post-intervention 30 min post-intervention 30 min post-intervention 250 800 TA p-p MEP amplitude [ V] TA p-p MEP amplitude [ V] 200 600 150 400 100 200 50 0 0 30 35 40 45 50 55 60 84 86 88 90 92 94 96 98 100 TMS intensity [%S.O.] TMS intensity [%S.O.]
Other applications for the MRCP in motor learning HIGH LEVEL ATHLETES
Improving athletic performance using real-time neurofeedback Susan Aliakbaryhosseinabadi Fabiano Landi Professor Uwe G. Kersting Xuxian Yin
BCI for improving athletic performance using real-time neurofeedback Susan Aliakbaryhosseinabadi Uwe G. Kersting Fabiano Landi Xuxian Yin
Special Thanks! The Acute study team: The athletic team: The Chronic study team: • Andrew JT Stevenson • Uwe G Kersting • Vladimir Kostic • Helle Jørgensen • Susan Aliakbaryhosseinabadi • Sasa Radovanovic • Margherita Castronovo • Fabiano Landi • Aleksandra Pavlovic • Kåre E Severinsen • Xu Xian • Ning Jiang • Jakob Blicher • The participants • Dario Farina • Anna C Lundgaard • The patients • Margherita Castronovo The funders: • Fabiano Landi • The Obels Family • Susan Foundation Aliakbaryhosseinabadi • Spar Nord Fonden • The patients • Lundbeck Fonden • EU – SEP-210192113
Recommend
More recommend