modeling and numerical simulations of fish like swimming
play

Modeling and numerical simulations of fish like swimming Michel - PowerPoint PPT Presentation

Modeling and numerical simulations of fish like swimming Michel Bergmann, Angelo Iollo INRIA Bordeaux Sud-Ouest, equipe MC2 Institut de Math ematiques Appliqu ees de Bordeaux 33405 TALENCE cedex, France Workshop Maratea, may 13 2010


  1. Modeling and numerical simulations of fish like swimming Michel Bergmann, Angelo Iollo INRIA Bordeaux Sud-Ouest, ´ equipe MC2 Institut de Math´ ematiques Appliqu´ ees de Bordeaux 33405 TALENCE cedex, France Workshop Maratea, may 13 2010 – p. 1

  2. Context and objectives ◮ Context : ANR CARPEiNETER Cartesian grids, penalization and level set for the simulation and optimisation of complex flows ◮ Objectives : ֒ → Model and simulate moving bodies S (translation, rotation, deformation, ..) ֒ → Couple Fluid and Structures ֒ → Cartesian meshes Avoid remeshing ֒ → Penalization of the equations To take into account the bodies ֒ → Level Set To track interfaces (fluid/fluid, fluid/structures) Workshop Maratea, may 13 2010 – p. 2

  3. Outline Flow modeling Numerical approach Method: discretization / body motion Validation Applications: 2D fish swimming Parametrization Classification: BCF On the power spent to swim Maneuvers and turns Fish school (3 fishes) 3D locomotion Conclusions and future works Workshop Maratea, may 13 2010 – p. 3

  4. Flow modeling ∂ Ω ∂ Ω 1 Ω 1 u 1 u 2 ∂ Ω 2 Ω f Ω 2 Ω i : Domain "body" i Ω f : Domain "fluid" Ω = Ω ∪ Ω i : Entire domain Workshop Maratea, may 13 2010 – p. 4

  5. Flow modeling ◮ Classical model: Navier-Stokes equations (incompressible): � ∂ u � ρ ∂t + ( u · ∇ ) u = −∇ p + µ ∆ u + ρ g dans Ω f , (1a) ∇ · u = 0 dans Ω f , (1b) u = u i sur ∂ Ω i (1c) u = u f sur ∂ Ω (1d) Numerical resolution Need of meshes that fit the body geometries ֒ → Costly remeshing for moving and deformable bodies!! Workshop Maratea, may 13 2010 – p. 5

  6. Flow modeling ◮ Penalization model: penalized Navier-Stokes equations (incompressible): � ∂ u � N s � ρ ∂t + ( u · ∇ ) u = −∇ p + µ ∆ u + ρ g + λρ χ i ( u i − u ) dans Ω , (2a) 1=1 ∇ · u = 0 Ω , dans (2b) u = u f sur ∂ Ω . (2c) λ ≫ 1 penalization factor → Solution eqs (2) tends to solution eqs (1) w.r.t. ε = 1 /λ → 0 . χ i characteristic function: χ i ( x ) = 1 if x ∈ Ω i , (3a) χ i ( x ) = 0 else if . (3b) Numerical resolution No need of meshes that fit the body geometries ֒ → Cartesian meshes Workshop Maratea, may 13 2010 – p. 6

  7. Flow modeling ◮ Transport of the characteristic function for moving bodies ∂χ i ∂t + ( u i · ∇ ) χ i = 0 . (4) Other choice: χ i = H ( φ i ) where H is Heaviside function and φ i the signed distance function ( φ i ( x ) > 0 if x ∈ Ω i , φ i ( x ) = 0 si x ∈ ∂ Ω i , φ i ( x ) < 0 else if). ∂φ i ∂t + ( u i · ∇ ) φ i = 0 . (5) ◮ Density � � � N s � N s � ρ = ρ f 1 − χ i + ρ i χ i . (6) i =1 i =1 Workshop Maratea, may 13 2010 – p. 7

  8. Flow modeling ◮ Dimensionless equations with U ∞ , D , ρ f , Re = ρU ∞ D : µ � N s ∂ u ∂t + ( u · ∇ ) u = −∇ p + 1 Re ∆ u + g + λ χ i ( u i − u ) dans Ω , (7a) 1=1 ∇ · u = 0 dans Ω , (7b) u = u f sur ∂ Ω (7c) ◮ Body velocity u i : u i = u i + Û u i + � u i (8) with: u i translation velocity Û u i rotation velocity � u deformation velocity (imposed for the swim) Workshop Maratea, may 13 2010 – p. 8

  9. Numerical approach | Method ◮ Space: Cartesian meshes, collocation with compact "non oscillating" scheme, Centered FD 2nd order and upwind 3rd order for convective terms ◮ Time: 1 st order explicit euler, implicit penalization (larger λ ) u ( n +1) − u ( n ) + ( u ( n ) · ∇ ) u ( n ) = − ∇ p ( n +1) + 1 Re ∆ u ( n +1) + g ∆ t � N s χ i ( n +1) ( u i ( n +1) − u ( n +1) ) , + λ 1=1 ∇ · u ( n +1) =0 ⇒ Problems ֒ → Pressure uncoupled → The function χ i ( n +1) and velocity u i ( n +1) are not known ֒ ⇒ Solutions ֒ → Chorin scheme (predictor/corrector) ֒ → Fractional step method (2 steps) Workshop Maratea, may 13 2010 – p. 9

  10. Numerical approach | Method ◮ Fractional steps method u ( n +1) − u ( n ) + ( u ( n ) · ∇ ) u ( n ) = − ∇ p ( ∗ ) + 1 Re ∆ u ( n +1) + g ∆ t + � ∇ p ( ∗ ) − ∇ p ( n +1) � � N s χ i ( n +1) ( u i ( n +1) − u ( n +1) ) , + λ 1=1 ∇ · u ( n +1) =0 u ( n +1) = f ( u ( n +1) , p ( n +1) ) i Step 1: ⇒ u ( ∗ ) , p ( ∗ ) Step 2 : ⇒ � u ( n +1) , � p ( n +1) Step 3 : ⇒ u ( n +1) = � f ( � u ( n +1) , � p ( n +1) ) i Step 4 : ⇒ u ( n +1) , p ( n +1) Workshop Maratea, may 13 2010 – p. 10

  11. Numerical approach | Method ◮ Step 1 : prediction u ( ∗ ) − u ( n ) + ( u ( n ) · ∇ ) u ( n ) = −∇ p ( ∗ ) + 1 Re ∆ u ( ∗ ) + g ∆ t ◮ Step 2 : correction u ( n +1) − u ( ∗ ) � = ∇ p ( ∗ ) − ∇ p ( n +1) ∆ t u ( n +1) =0 ∇ · � with ψ = ∇ p ( ∗ ) − ∇ p ( n +1) , on a ∆ ψ = ∇ · u ( ∗ ) u n +1 = � u ∗ − ∇ ψ � p ∗ + ψ p n +1 = � � ∆ t Workshop Maratea, may 13 2010 – p. 11

  12. Numerical approach | Method ◮ Etape 3 : body motion Compute forces F i and torques M i m d u i = F i + m g , translation velocity , m mass u i (14a) d t d J Ω i = M i , angular velocity , J inertia matrix Ω i (14b) d t Rotation velocity Û u i = Ω i × r G with r G = x − x G ( x G center of mass). Re ( ∇ u + ∇ u T ) et n outward normal unit vector at s i : 1 Stress tensor T ( u , p ) = − p I + � F i = − T ( u , p ) n d x , (15a) ∂ Ω i � M i = − T ( u , p ) n × r G d x . (15b) ∂ Ω i Evaluation of forces and torques Cartesian mesh: no direct acces to ∂ Ω i ֒ → Not easy evaluation .... Workshop Maratea, may 13 2010 – p. 12

  13. Numerical approach | Method Definition : Arbitrarily domain Ω f i ( t ) surrounding body i . Forces: � � F i = − d u d V + ( T + ( u − u i ) ⊗ u ) n d S d t Ω fi ( t ) ∂ Ω fi ( t ) � (16a) + (( u − u i ) ⊗ u ) n d S. ∂ Ω i ( t ) Torques: � � M i = − d u × r G d V + ( T + ( u − u i ) ⊗ u ) n × r G d S d t Ω fi ( t ) ∂ Ω fi ( t ) � (16b) + (( u − u i ) ⊗ u ) n × r G d S. ∂ Ω i ( t ) Evaluation of forces and torques The term onto ∂ Ω i vanishes in our case (no transpiration) ֒ → Easy evaluation! Workshop Maratea, may 13 2010 – p. 13

  14. Numerical approach | Method ◮ Step 4 : Update velocity using implicit penalization � N s u ( n +1) − � u ( n +1) χ i ( n +1) ( u i ( n +1) − u ( n +1) ) = λ ∆ t 1=1 ◮ Summary: ⊲ Solve Navier-Stokes equation without penalization ⇒ � u ( n +1) , � p ( n +1) ⊲ Compute body motion ⇒ u ( n +1) , χ ( n +1) i i ⊲ Correct solution with penalization ⇒ u ( n +1) , p ( n +1) ◮ Remark: ⊲ Step 4 can be implemented in step 1using explicit body velocity (time order is 1). Workshop Maratea, may 13 2010 – p. 14

  15. Numerical approach | Validation ◮ Improvement of the penalization order ֒ → Test case: 2D Green-Taylor vortex with analytical solution ( 0 ≤ x, y ≤ π , Re = 100 ) € � u ( t, x ) = sin( x ) cos( y ) exp( − 2 t/Re ) , v ( t, x ) = − cos( x ) sin( y ) exp( − 2 t/Re ) , u ( T f , x ) − u ( T f , x )) 2 d x. ( � E = p ( t, x ) = 1 4 (cos(2 x ) + cos(2 y )) exp( − 4 t/Re ) . Ω 1 χ = 0 0.9 Fluid 0.8 0.7 0.6 χ = 1 0.5 " Body " 0.4 0.3 0.2 0.1 0 ֒ → "Non intrusive" body ⇒ penalization velocity depends on space and time Workshop Maratea, may 13 2010 – p. 15

  16. Numerical approach | Validation χ = 0 χ = 0 " Fluid " " Fluid " 1 - No penalization ֒ → use analytical boundary conditions → Numerical scheme order, (∆ x ) 2 ⇒ 2 nd order x i − 1 x i +1 x i − 2 x i 0 No penalization → order 2 1.2E-07 -2 1.1E-07 -4 1.0E-07 9.1E-08 -6 7.9E-08 log E -8 6.8E-08 5.7E-08 -10 4.5E-08 -12 3.4E-08 2.3E-08 -14 1.1E-08 -16 -4.5 -4 -3.5 -3 -2.5 log ∆ x Workshop Maratea, may 13 2010 – p. 16

  17. Numerical approach | Validation χ = 1 χ = 0 " Body " " Fluid " 2 - "Exact" penalization: ֒ → use analytical penalization values u n i = u n i ⇒ 2 nd order x i − 1 x i +1 x i − 2 x i 0 No penalization → order 2 "Exact" pen. → order 2 1.2E-07 -2 1.1E-07 -4 1.0E-07 9.0E-08 -6 7.8E-08 log E -8 6.7E-08 5.6E-08 -10 4.5E-08 -12 3.4E-08 2.2E-08 -14 1.1E-08 -16 -4.5 -4 -3.5 -3 -2.5 -2 log ∆ x Workshop Maratea, may 13 2010 – p. 16

  18. Numerical approach | Validation χ = 1 χ = 0 " Body " " Fluid " 3 - "Standard" penalization: ֒ → use only boundary velocity u n i = u n φ =0 ⇒ 1 nd order x i − 1 x i +1 x i − 2 x i 0 No penalization → order 2 "Exact" pen. → order 2 4.7E-03 -2 "Classic" pen. → order 1 4.3E-03 -4 3.8E-03 3.4E-03 -6 3.0E-03 log E -8 2.6E-03 2.1E-03 -10 1.7E-03 -12 1.3E-03 8.5E-04 -14 4.3E-04 -16 -4.5 -4 -3.5 -3 -2.5 log ∆ x Workshop Maratea, may 13 2010 – p. 16

  19. Numerical approach | Validation χ = 1 χ = 0 " Body " " Fluid " 4 - "Improved" penalization: ֒ → use Level Set informations φ =0 − φ i ( ∂ u i /∂ n ) n − 1 u n i = u n ⇒ 2 nd order x i − 1 x i +1 x i − 2 x i 0 No penalization → order 2 "Exact" pen. → order 2 1.4E-05 -2 "Classic" pen. → order 1 1.3E-05 -4 "Improved" pen. → order 2 1.2E-05 1.0E-05 -6 9.0E-06 log E -8 7.8E-06 6.5E-06 -10 5.2E-06 -12 3.9E-06 2.6E-06 -14 1.3E-06 -16 -4.5 -4 -3.5 -3 -2.5 -2 log ∆ x Workshop Maratea, may 13 2010 – p. 16

Recommend


More recommend