Measurement of low energy Electronic Recoil Response and Electronic/Nuclear Recoils Discrimination in XENON100 Jingqiang Ye, UC San Diego On behalf on XENON Collaboration LIDINE 2017, Sep. 22 - 24, 2017, SLAC 1
Introduction g1 π "# S1 ER,NR g2 π $ S2 ER g 1 = S 1 , g 2 = S 2 β’ Scintillation signal S1 N ph N e β’ Charge signal S2 β’ Different S2/S1 for ER/NR NR β’ Primary scintillation gain g1 β’ Secondary scintillation gain g2 β’ g1 is proportional to photon detection efficiency(PDE) 2
Data Extraction Calibration source & detector condition: Drift Extraction Electron Max drift Events in sub-FV( 10 ) ) field(V/cm) field(kV/cm) lifetime(us) time(us) β’ CH 3 T calibration (<18.6 keVee, ER) 1470 Β± 190 β’ AmBe calibration(NR) CH3T 400 10.0 182 43.4 β’ 3 different drift and extraction fields 390 Β± 160 CH3T 167 8.2 202 11.9 CH3T 100 8.2 590 Β± 30 220 8.9 0 0 2.2 1490 Β± 100 AmBe 400 10.0 182 3.5 AmBe 167 8.2 490 Β± 130 202 3.6 20 20 2 550 Β± 60 AmBe 100 8.2 220 6.5 FV#1 Relative Light Yield to Center 1.8 40 40 FV#2 1.6 s] 60 60 Β΅ FV#3 Drift Time [ To compare with different PDE: 1.4 80 80 β’ 7 sub-FVs(βsmall detectorβ) FV#4 1.2 50% quantile in π & direction, equal in drift time β’ 100 100 FV#5 β’ Enough statistics in each sub-FV 1 120 120 β’ Avoid strong field distortion in top and bottom region FV#6 0.8 β’ No position dependent correction of S1 and S2 140 140 β’ Small S1 and S2 variation in each sub-FV(6% for S1, 0.6 FV#7 5% for S2) 160 160 0.4 β’ PDE increases from top part to bottom part 180 1800 0.2 0 20 20 40 40 60 60 80 80 100 120 140 160 180 200 220 100 120 140 160 180 200 220 2 2 Detected Radius at Liquid Surface [cm ] 3
Detector calibration(g1, g2) Calibration principle: Doke method E = W Β· ( S 1 + S 2 ) , W = 13 . 7 eV g 1 g 2 S 2 E = β g 2 S 1 E + g 2 g 1 W 4
Detector calibration(g1, g2) Calibration result: β’ g1 z dependence due to geometry effect β’ g2 z dependence due to electron lifetime β’ g1 is consistent under different drift fields β’ g2 increases with larger extraction field 5
οΏ½ Simulation model Excimer production Binomial π $6 ~ B( π + , π½/(1 + π½) ) Xe * Incoming particle Xe S1 S2 Xe + Xe 2+ Fano fluctuation Gaussian e - e - e - π + ~ N(E/W, πΊπΉ/π ) F=0.059 Photon detection Poisson Recombination fluctuation Recombination Gaussian Electron drift & extraction Binomial r~ N(<r>, βπ ) Binomial ~ B( π 7 ,r) ~B( π $ , π 4 β π $6 ) r: recombination factor <r>: average recombination fraction(<r> is tuned) βπ : recombination fluctuation( Ξπ /<r> is tuned) 6
MC-data matching Use Binned Maximum Likelihood Estimation(MLE) in Log10(S2/S1) vs S1 space to extract ER response 3500 S2 spectrum (data) 0 < S1 < 10 S1 spectrum (data) 2000 3000 15.4%-84.6% credible region 15.4%-84.6% credible region 2500 Counts 1000 2000 1500 0 10 < S1 < 20 1000 1500 500 1000 0 500 3 . 0 Log 10 (S2/S1) Point estimation MC 0 10 3 800 20 < S1 < 30 Counts 2 . 5 600 Counts 400 2 . 0 10 2 200 0 1 . 5 30 < S1 < 40 300 200 3 . 0 ER band medians (data) Log 10 (S2/S1) Data 10 2 100 ER band medians (mc) 2 . 5 0 Counts 40 < S1 < 50 80 2 . 0 10 1 60 40 1 . 5 20 10 0 0 0 10 20 30 40 50 60 70 80 0 1000 2000 3000 4000 7 S1[PE] S2[PE]
Light yield β’ Lower light yield at higher drift field as expected β’ Consistent with LUX measurement β’ Light yield deviates from NEST at high energy, especially at high drift fields a) 100 V/cm b) 167 V/cm c) 400 V/cm 50 h n ph i / E [ph/keV] 40 30 Best estimation Β± 1 Ο fitting uncer. 20 Credible region NEST v0.98 10 LUX @ 105 V/cm LUX @ 180 V/cm Unc. [ph/keV] 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 4 2 0 οΏ½ 2 οΏ½ 4 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 Energy[keV] 8
Recombination fluctuation No significant change observed between different drift fields 0 . 08 d) 100 V/cm e) 167 V/cm f) 400 V/cm 0 . 07 0 . 06 0 . 05 β r 0 . 04 Best estimation 0 . 03 Β± 1 Ο fitting uncer. 0 . 02 Credible region LUX @ 180 V/cm 0 . 01 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 0 . 03 Abs. unc. 0 . 02 0 . 01 0 . 00 β 0 . 01 β 0 . 02 β 0 . 03 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 Energy[keV] 9
ER/NR discrimination β’ Normalize S1 to photons generated to compare ER leakage under different g1 β’ S2 is corrected for electron lifetime 10
ER/NR discrimination ER leakage is smaller at larger g1 11
ER/NR discrimination for different g1 and drift fields β’ S1 range(100-400 photons), energy range(11-34 keVnr) β’ ER leakage is smaller at larger g1 β’ No significant difference for ER leakage between 100 V/cm and 400 V/cm drift field β 2 10 ER Leakage Fraction 400 V/cm β 3 10 167 V/cm 100 V/cm 0.04 0.05 0.06 0.07 0.08 0.09 g 12 1
Summary β’ Light yield and recombination fluctuation for low energy under three drift field are measured β’ Light yield under 100 and 167 V/cm are consistent with LUX measurement β’ ER leakage is smaller for larger photon detection efficiency β’ No significant difference in ER leakage is observed between 100 V/cm and 400 V/cm drift field β’ The paper will be available on arXiv next week 13
Back up β’ Drift field increases: β’ ER/NR separation increases β’ ER band width increases β’ g1 increases: β’ ER/NR separation doesnβt change significantly β’ ER band width decreases 14
Recombination factor LUX Collaboration arXiv: 1512.03133 0 . 8 0 . 7 0 . 6 0 . 5 h r i 0 . 4 0 . 3 100 V/cm 0 . 2 167 V/cm 0 . 1 400 V/cm 0 . 0 0 2 4 6 8 10 12 14 16 Energy[keV] Black: 180 V/cm Blue: 105 V/cm 15
3500 S2 spectrum (data) 0 < S1 < 10 S1 spectrum (data) 2000 3000 15.4%-84.6% credible region 15.4%-84.6% credible region 2500 Counts P-value = 0.01 1000 2000 1500 0 10 < S1 < 20 1000 1500 P-value = 0.16 500 1000 0 500 3 . 0 Log 10 (S2/S1) Point estimation MC 0 10 3 800 20 < S1 < 30 Counts 2 . 5 600 P-value = 0.10 Counts 400 2 . 0 10 2 200 0 1 . 5 30 < S1 < 40 300 P-value = 0.37 200 3 . 0 ER band medians (data) Log 10 (S2/S1) Data 10 2 100 ER band medians (mc) 2 . 5 0 Counts 40 < S1 < 50 80 P-value = 0.38 2 . 0 10 1 60 40 1 . 5 20 10 0 0 0 10 20 30 40 50 60 70 80 0 1000 2000 3000 4000 16 S1[PE] S2[PE]
Recommend
More recommend