the mean impulse response of homogeneous isotropic
play

The Mean Impulse Response of Homogeneous Isotropic Turbulence: the - PowerPoint PPT Presentation

The Mean Impulse Response of Homogeneous Isotropic Turbulence: the first (DNS based) measurement Marco Carini and Maurizio Quadrio Dipartimento di Ingegneria Aerospaziale Politecnico di Milano XX AIDAA Congress Milano, 30 June 2009 M. Carini


  1. The Mean Impulse Response of Homogeneous Isotropic Turbulence: the first (DNS based) measurement Marco Carini and Maurizio Quadrio Dipartimento di Ingegneria Aerospaziale Politecnico di Milano XX AIDAA Congress Milano, 30 June 2009 M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 1 / 28

  2. Outline Introduction The impulse response and its measurement Results Conclusions M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 2 / 28

  3. Introduction Numerical simulation of turbulence ◮ Turbulence dominates most engineering flows; ◮ Available strategies: RANS, LES; ◮ Modeling (Reynolds stress, Subgrid scale stress) always required; ◮ Closure theories useful for modeling. Wu and Moin JFM 2009 M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 3 / 28

  4. Introduction Linear impulse response and closure theories A statement of the closure problem Homogeneous equations in Fourier space ( κ , p , q wave vectors) using symbolic notation: ◮ First-order eq. (momentum) „ ∂ « ∂t + νκ 2 � b u ( κ , t ) � = � b u b u � , M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 4 / 28

  5. Introduction Linear impulse response and closure theories A statement of the closure problem Homogeneous equations in Fourier space ( κ , p , q wave vectors) using symbolic notation: ◮ First-order eq. (momentum) „ ∂ « ∂t + νκ 2 � b u ( κ , t ) � = � b u b u � , ◮ Second-order moment eq. „ ∂ « ∂t + ν ( κ 2 + q 2 ) � b u ( κ , t ) b u ( q , t ) � = � b u b u b u � , M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 4 / 28

  6. Introduction Linear impulse response and closure theories A statement of the closure problem Homogeneous equations in Fourier space ( κ , p , q wave vectors) using symbolic notation: ◮ First-order eq. (momentum) „ ∂ « ∂t + νκ 2 � b u ( κ , t ) � = � b u b u � , ◮ Second-order moment eq. „ ∂ « ∂t + ν ( κ 2 + q 2 ) � b u ( κ , t ) b u ( q , t ) � = � b u b u b u � , ◮ Third-order moment eq. „ ∂ « ∂t + ν ( κ 2 + q 2 + p 2 ) � b u ( κ , t ) b u ( q , t ) b u ( p , t ) � = � b u b u b u b u � , M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 4 / 28

  7. Introduction Linear impulse response and closure theories A statement of the closure problem Homogeneous equations in Fourier space ( κ , p , q wave vectors) using symbolic notation: ◮ First-order eq. (momentum) „ ∂ « ∂t + νκ 2 � b u ( κ , t ) � = � b u b u � , ◮ Second-order moment eq. „ ∂ « ∂t + ν ( κ 2 + q 2 ) � b u ( κ , t ) b u ( q , t ) � = � b u b u b u � , ◮ Third-order moment eq. „ ∂ « ∂t + ν ( κ 2 + q 2 + p 2 ) � b u ( κ , t ) b u ( q , t ) b u ( p , t ) � = � b u b u b u b u � , ◮ And so on. M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 4 / 28

  8. Introduction Linear impulse response and closure theories An overview of closure theories Turbulence in fluids , Lesieur, 2008 Navier-Stokes Stochastic models Φ α,β,σ R ENORMALIZATION THEORIES diagrammatic expansions R.C.M. functional power Statistical moment hierarchy Markovianization Φ α,β,σ ( t ) R.N.G. L.E.T. D.I.A. reversions Eulerian theories G.R.I. G.R.I. � � u � u � u � u � = 0 � � u � u � u � u � = − µ κ � � u � u � u � L.D.I.A. L.H.D.I.A. L.R.A. M.R.C.M. Φ κ,p,q α,β,σ ( t ) S.B.L.H.D.I.A. ψ κ,p,q = ψ 0 Lagrangian theories µ = νκ 2 + µ κ ˜ Markovianization Q.N. E.D.Q.N. E.D.Q.N.M. T.F.M. µ κ = 0 Markovianization Q.N.M. M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 5 / 28

  9. Introduction Linear impulse response and closure theories Renormalization approach Navier-Stokes Second-order closure obtained by: R ENORMALIZATION THEORIES ◮ introducing the mean impulse response diagrammatic expansions tensor G ij ; functional ◮ resorting to complicated mathematical power L.E.T. R.N.G. D.I.A. reversions tools (from quantum mechanics ); Eulerian theories ◮ deriving an integro-differential closed set G.R.I. G.R.I. of equations in the unknowns: L.D.I.A. L.H.D.I.A. ◮ Q ij ( κ , τ ) = � b L.R.A. u i ( κ , t ) b u j ( − κ , t − τ ) � ; ◮ G ij ( κ , τ ) . S.B.L.H.D.I.A. Lagrangian theories M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 6 / 28

  10. Introduction Linear impulse response and closure theories The Direct Interaction Approximation theory Kraichnan JFM 1959 ◮ The first theory introducing the concept of impulse response tensor; ◮ At the root of all triadic closures; ◮ Avoids unphysical behaviors; ◮ No empirical parameters; ◮ Deviation from Kolmogorov -5/3 law. Robert H. Kraichnan (Philadelfia 1928 - Santa Fe 2008) M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 7 / 28

  11. Introduction Linear impulse response and closure theories Why measuring G ij in homogeneous isotropic turbulence ? MOTIVATIONS ◮ The related closure theories are first developed there; ◮ simplest turbulent flow; ◮ a measure of G ij is missing; ◮ G ij measure might sort out controversial issues. M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 8 / 28

  12. The impulse response and its measurement Analytical tools Navier-Stokes equations in wave-number space Each space direction assumed statistically homogeneous:  κ i � u i ( κ , t ) = 0 ,    � ∂ � �   ∂t + νκ 2 u m ( κ − p , t ) d p + P ij ( κ ) � u i ( κ , t ) = M ijm ( κ ) � u j ( p , t ) � � f j ( κ , t ) ,  with: ◮ P ij ( κ ) projection tensor in Fourier space, P ij ( κ ) = δ ij − κ − 2 κ i κ j ; ◮ M ijm ( κ ) ≡ − i/ 2( κ m P ij ( κ ) + κ j P im ( κ )) ; ◮ � f j ( κ , t ) volume stirring force. M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 9 / 28

  13. The impulse response and its measurement Analytical tools The linear impulse response definition Non-linear system: linear response respect to infinitesimal variations ∆ ( · ) . T = t > t ′ T = t ′ volume force ∆ u ( x , t ) turbulent fluctuations ∆ f ( x ′ , t ′ ) � � G ij ( x , x ′ , t, t ′ ) ∆f j ( x ′ , t ′ ) d x ′ dt ′ ∆u i ( x , t ) = M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 10 / 28

  14. The impulse response and its measurement Analytical tools Impulse response properties ◮ The mean stationary response in Fourier space: � � � G ij ( κ , κ ′ , τ ) = G ij ( κ , τ ) δ ( κ − κ ′ ); M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 11 / 28

  15. The impulse response and its measurement Analytical tools Impulse response properties ◮ The mean stationary response in Fourier space: � � � G ij ( κ , κ ′ , τ ) = G ij ( κ , τ ) δ ( κ − κ ′ ); ◮ Statistical isotropy: G ij ( κ , τ ) = P ij ( κ ) G ( κ, τ ) , where G ( κ, τ ) is the mean impulse response function. M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 11 / 28

  16. The impulse response and its measurement Analytical tools Impulse response properties ◮ The mean stationary response in Fourier space: � � � G ij ( κ , κ ′ , τ ) = G ij ( κ , τ ) δ ( κ − κ ′ ); ◮ Statistical isotropy: G ij ( κ , τ ) = P ij ( κ ) G ( κ, τ ) , where G ( κ, τ ) is the mean impulse response function. ◮ Real and bounded: |G ( κ, τ ) | ≤ G ( κ, 0 + ) = 1 , ∀ τ > 0 and ∀ κ. M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 11 / 28

  17. The impulse response and its measurement Kraichnan’s heritage The Stokes or viscous response function ◮ Dropping non-linear terms in the NS momentum eq., Stokes momentum eq. is obtained: � ∂ � � ∂t + νκ 2 u m ( κ − p , t ) d p + P ij ( κ ) � u i ( κ , t ) = M ijm ( κ ) u j ( p , t ) � f j ( κ , t ) . � � M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 12 / 28

  18. The impulse response and its measurement Kraichnan’s heritage The Stokes or viscous response function ◮ Dropping non-linear terms in the NS momentum eq., Stokes momentum eq. is obtained: � ∂ � � ∂t + νκ 2 u m ( κ − p , t ) d p + P ij ( κ ) � u i ( κ , t ) = M ijm ( κ ) u j ( p , t ) � f j ( κ , t ) . � � ◮ The Stokes response function G (0) ( κ, τ ) can be derived analytically: G (0) ( κ, τ ) = exp( − νκ 2 τ ) . M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 12 / 28

  19. The impulse response and its measurement Kraichnan’s heritage The DIA approximate solution After manipulating DIA eqs. in their homogeneous isotropic form Kraichnan derived (JFM 1959): G ( κ, τ ) = exp( − νκ 2 τ ) J 1 (2 u 0 κτ ) , u 0 κτ where: ◮ J 1 is the Bessel’s function of the first kind; ◮ u 0 is the root mean squared of the velocity field. M. Carini & M. Quadrio (DIA-PoliMI) HIT Impulse Response XX AIDAA Congress, 30 June 2009 13 / 28

Recommend


More recommend