mean structure and variability
play

Mean Structure and Variability Ren D. Gareaud Geophysics - PowerPoint PPT Presentation

Coastal winds over EBUS Mean Structure and Variability Ren D. Gareaud Geophysics Department, Universidad de Chile Center for Climate and Resilience Research Thanks to Jos Rutllant 1,2 , Ricardo Muoz 1 , David Rahn Outline Subtropical


  1. Coastal winds over EBUS Mean Structure and Variability René D. Gareaud Geophysics Department, Universidad de Chile Center for Climate and Resilience Research Thanks to José Rutllant 1,2 , Ricardo Muñoz 1 , David Rahn

  2. Outline ● Subtropical anticyclones: Hadley + Mnts + Monsoons ● Coastal jets (large-scale and local-scale mean structure) ● Coastal winds variability ● Extra bonus….when upwelling is gone….

  3. EBUS: Subtropical anticyclones, equatorward flow and cold SST

  4. General circulation in an aqua-planet Perpetual Equinox ITCZ: Intertropical Convergence Zone NE trades 0° SE trades But we want subtropical highs! 45° Surface wind (arrows) Precipitation (green shadow)

  5. General circulation in an aqua-planet Perpetual Equinox ITCZ 0° Jet stream (westerly flow) aloft (10-12 km): long term mean. 60° Boundary between subtropical Midlatitude precipitation and extratropical air masses maximum and westerly belt

  6. Atmospheric flow – mountain interaction Zonal wind just upstream of the Andes (over the SE Pacific). Note that in winter the subtropical Jet (30ºS) impinges against the high Andes (not so much in summer).

  7. Atmospheric flow – mountain interaction = constant H North East 12 km 5 km West South

  8. Atmospheric flow – mountain interaction = constant H

  9. Austral winter: Mountain only run (no latent heating) is quite good in simulating the SEP anticyclone w(700 hPa) Stream function at 900 hPa Full (heat+mnt) Mnt. only Strong subsidence Anticyclone split Rodwell and Hoskins 2001

  10. Atmospheric flow – mountain interaction July 850 hPa winds CTRL CTRL NSAO NSAO

  11. Atmospheric flow – mountain interaction Low cloud feedback Evaporative cooling

  12. Atmospheric flow – mountain interaction 900 hPa wind & Temp Clouds: Control - noAndes Control No Andes No clouds! noAndes Warm air into MBL

  13. Atmospheric flow – mountain interaction No Andes No clouds!

  14. SST and Sfc Wind: Control - No Andes No Andes No clouds! Warm ocean… Clouds & LTS Control - No Andes

  15. Monsoonal (continental heating) influence Zonal wind just upstream of the Andes (over the SE Pacific). Note that in winter the subtropical Jet (30ºS) impinges against the high Andes (not so much in summer).

  16. Austral summer: Mountain only run not good in simulating the SEP anticyclone. Continental heating is essential. w(700 hPa) Stream function at 900 hPa Full (heat+mnt) Mnt. only Anticyclone split much weaker Subsidence in right place but only ¼ of the full value

  17. Efecto monsonal (Rodwell and Hoskins 2001) • Calentamiento diabático en zona de precipitación • Expansión del calentamiento por ondas de Kelvin/Rossby • Advección fría al Oeste del continente • Incremento de la subsidencia sobre Pacifico SE Precipitation 200 hPa wind 500 hPa temperature 200 hPa wind Horizontal cold advection

  18. Efecto monsonal (Rodwell and Hoskins 2001) 200 hPa Hor Temp Adv SLP Sobre el SEP el calentamiento diabático es levemente negativo por lo que advección horizontal fría es compensada por subsidencia (calentamiento adiabático). Notar qué lo contrario ocurre en el SACZ. Sobre la Amazonia el balance es entre ascenso y calentamiento diabatico.

  19. Key atmospheric features over the SEP IT ITCZ SAM SC SCu deck Coastal Fog Coastal Subtropical je jet Hig igh

  20. Zonal flow – Andes interaction Monsonal connection (austral summer only) Svedrup balance ↑ subsidence Equatorward flow ↑ Low Trop. Stability Drying of MBL ↑ coastal upwelling ↑ Stratus clouds ↑ Evaporative cooling Oceanic transport ↑ MBL cooling ↓Solar rad. at sfc ↓ SST (near shore and offshore)

  21. Coastal Low Level Jets NCEP-NCAR Reanalysis, 1000 hPa meridional (NS) winds, annual long term mean

  22. Surface wind speed & coastal jets Jet costero (máxima magnitud) a lo largo de la costa Variabilidad sinóptica y estacional dictada por  (SLP) /  y A A

  23. Cross shore Along shore V V Simulated (MM5) structure of the coastal jet U U   w w V > 18 m/s Garreaud & Muñoz 2006

  24. Coastal jet dynamics     C  u u u 1 p d + + = + − u v fv u v      t x y x H      v v v 1 p C + + = − + − d u v fu v v      t x y y H  1 p C −  = 2 d v  y H Along-shore pressure gradient  friction Garreaud & Muñoz 2006

  25. Goals of Fondecyt 1090492 (Garreaud, Muñoz, Rutllant) Understand the alongshore structure of the MBL and its diurnal cycle

  26. Coastal jets intensify downstream of major capes. Upwelling maximum Cloud free

  27. QSCAT also reveals some meso-scale details and insights on the diurnal cycle

  28. SQ1-Climatological near-coastal wind maxima around 30 ° S: 70°W 72°W Structure? Wind-SST feedback or expansion fan Effect? 74°W • Aircraft zonal coastal jet missions 28°S Expansion • Radiosonde from R/V Fan? • Modeling: control(?) + sens. runs 30°S SST Max Upwelling Front Min SST Coastal Jet Core: v  p/  y 32°S

  29. New Conceptual Model for Coastal Jet (30ºS) Rahn & Garreaud 2012

  30. Synoptic variability during CUpEx: Local T(Ocean) & wind R1 R2

  31. Synoptic variability during CUpEx PGF  C 1 p − =  2 d v v   y H

  32. Synoptic variability during CUpEx: SSMI SST High wind SST field [C] Low - High wind SST field [C]

  33. Synoptic variability of Coastal winds 1-Point correlation map. V(33S/73W) regresed upon U,V elsewhere (vectors) U,V elsewhere (vectors) V elsewhere (contour) WS elsewhere (contour) Cloud elsewhere (colors) SST elsewhere (colors) Jet events associated with: Stronger anticyclone / Reduced Sc near the coast / Increased Sc off the coast / Sea surface cooling at and downstream the jet

  34. Composite upwelling events in near Concepción (37ºS, Chile) Upwelling Relaxation begins begins

  35. Composite upwelling events in near Concepción (37ºS, Chile) Upwelling Relaxation begins begins

  36. Coastal El Niño 2017 (a) 200 hPa height and OLR anomalies (15-30 January 2017) 3 weeks with very weak westerlies impinging the Andes (b) Rainfall deciles January 2017 Garreaud 2017

  37. Coastal El Niño 2017 >200 fallecidos, 3.1 Bill US$ NW Peru storms, 03 March 2017 GPM radar 17 dBZ isosurface Source: Harold Pierce, NASA GSFC

  38. The March 2015 Atacama Storm . Three days of intense rainfall triggered landslides and widespread flooding. More than 80 causalities and major damage to public and private infrastructure. Most acute impact during the event but many problems (e.g. public health) in subsequent months.

  39. Plausible suspect: marked, sudden SST warming off South America (EN 2015) Destabilize the atmosphere and provide extra moisture Niño 1-2 SST SST anomaly 23 March 2015 COL Track

  40. Numerical experiment using RegCM (forced by ERA) In a sensitivity run the SST was keep equal to the field at March 10 (prior to the warming) thus causing a sfc BC cooler than the control run

  41. RegCM simulated precipitation Sens-CTR Sens/CTR % CTR Sens

  42. CTR PW (contours) and SENS-CTR PW (colors)

Recommend


More recommend