MATH 20: PROBABILITY Fundamental Theorems of Probability Theory Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020
Fundamental Theorems of Probability Theory 4 5 Central Li Ce Limit 8 Th Theo eorem em 3 2 6 7 1 Law of La La Large ge Numbers Nu XC 2020
La Law of La Large ge Number bers frequency as interpretation of probability ยง convergence of the sa sample m mea ean ยง XC 2020
LAW W OF OF LARGE GE NU NUMBE MBERS FOR OR DISCRETE RAND NDOM OM VARIABL BLES discrete random variables XC 2020
Let ๐ be a nonnegative discrete random variable with expected value ๐น(๐) , and let This is a sample text. ๐ > 0 be any positive number. Then Insert your desired text here. This is a sample text. Insert your desired text here. ๐ : : nonnegative ๐(๐ โฅ ๐) ๐น(๐) ๐ Markov Ma ๐ธ(๐ โฅ ๐ป) โค ๐ญ(๐) inequ in quality ity ๐ป XC 2020
Proof Let ๐ be a po posi sitive discrete random variable with expected value ๐น(๐) , and let ๐ > 0 be any positive number. ๐ธ(๐ โฅ ๐ป) โค ๐ญ(๐) ๐ป + ๐(๐) = ๐ ๐ ๐ โฅ ๐ = + ๐(๐ฆ) ๐ !"# ๐ญ ๐ = + ๐๐(๐) โฅ + ๐๐ ๐ โฅ ๐ป + ๐ ๐ = ๐ป๐ ๐ โฅ ๐ & ๐๐(๐) = ๐ญ(๐) ๐ ๐"๐ป ๐"๐ป ๐ XC 2020
Let ๐ be a discrete random variable with expected ๐ ' = ๐(๐) , value ๐ = ๐น(๐) and variance and let ๐ > 0 be any positive number. Then This is a sample text. Insert your desired text here. This is a sample text. Insert your desired text here. ๐ : : not t necessarily ๐ธ(|๐ โ ๐| nonne no nnegative ve โฅ ๐ป) ๐ ๐ ๐ป ๐ Chebyshev Ch ๐ธ(|๐ โ ๐| โฅ ๐ป) โค ๐ ๐ inequalit in ity ๐ป ๐ XC 2020
Proof Let X be a discrete random variable with expected value ๐ = ๐น(๐) ๐ ' = ๐(๐) , and variance and let ๐ > 0 be any positive number. ๐ธ(|๐ โ ๐| โฅ ๐ป) โค ๐ ๐ ๐ป ๐ + ๐(๐) = ๐ ๐(|๐ โ ๐| โฅ ๐ป) = + ๐(๐ฆ) ๐ |๐)๐|"๐ป ๐ ' = ๐ ๐ = + (๐ฆ โ ๐) ' ๐(๐ฆ) โฅ ๐ฆ โ ๐ ' ๐ ๐ฆ + ! !)+ "# (๐ โ ๐) ๐ ๐(๐) = ๐พ(๐) & โฅ ๐ ' ๐ ๐ฆ = ๐ ' ๐(|๐ โ ๐| โฅ ๐) + ๐ !)+ "# XC 2020
Ma Markov ๐ธ(๐ โฅ ๐ป) โค ๐ญ(๐) in inequ quality ity ๐ป ๐ : : nonnegative ๐ญ(๐) : kn known Chebyshev Ch ๐ธ(|๐ โ ๐| โฅ ๐ป) โค ๐ ๐ inequalit in ity ๐ป ๐ ๐ : : not t necessarily ๐ญ(๐) : kn known ๐พ(๐) : kn known no nonne nnegative ve XC 2020
Example 1 ยง Let ๐ be any random variable which takes on values 0, 1, 2, โฏ , ๐ and has ๐น(๐) = ๐ (๐) = 1 . Show that for any positive integer ๐ , ๐(๐ โฅ ๐ + 1) โค " # # . Ma Markov kov Inequality Ch Chebys byshev Inequality ๐(|๐ โ ๐| โฅ ๐) โค ๐ $ ๐(๐ โฅ ๐) โค ๐น(๐) ๐ ๐ $ XC 2020
Example 1 ยง Let ๐ be any random variable which takes on values 0, 1, 2, โฏ , ๐ and has ๐น(๐) = ๐ (๐) = 1 . Show that for any positive integer ๐ , ๐(๐ โฅ ๐ + 1) โค " # # . Ch Chebyshev Inequ quality ๐(|๐ โ ๐| โฅ ๐) โค ๐ ' ๐ ' ๐ = ๐ ' = 1 , ๐ = ๐ ๐ ๐ โ 1 โฅ ๐ = ๐(๐ โฅ ๐ + 1) โค 1 ๐ ' XC 2020
Example 2 ยง Choose ๐ with distribution โ๐ ๐ . ๐ ๐ฆ = " " $ $ Ch Chebyshev Inequ quality ๐(|๐ โ ๐| โฅ ๐) โค ๐ ' ๐ ๐ โฅ ๐ = 1 ๐ ' ๐ = 0 , ๐ ' = ๐ ' ๐ ๐ โฅ ๐ โค ๐ ' ๐ ' = 1 XC 2020
Law of Large Numbers ยง Let ๐ " , ๐ $ , โฏ , ๐ % be an independent trials process, with same fi nite expected value ๐ $ = ๐(๐ & ) and fi nite variance & ) . ๐ = ๐น(๐ ยง Let ๐ % = ๐ " + ๐ $ + โฏ + ๐ % . Then for any ๐ > 0 , Large ๐(| ' $ % โ ๐| โฅ ๐) โ 0 , as ๐ โ +โ . Numbers ยง Equivalently, %โ) ๐( ' $ % โ ๐ < ๐) = 1 . lim , ! As - is an average of the individual outcomes, the LLN is ! often referred to as the la law of averages . XC 2020
Law of Large Numbers ยง Let ๐ " , ๐ $ , โฏ , ๐ % be an independent trials process with ๐น ๐ & = ๐ and ๐ ๐ & = ๐ $ . ยง Let ๐ % = ๐ " + ๐ $ + โฏ + ๐ % be the sum, ๐ โ +โ ๐ต % = ' $ and % be the average. Then ๐น ๐ต % = ๐ = ๐ ๐ต % โ 0 ๐ธ ๐ต % โ 0 ๐ ๐ต % = * # ๐ธ ๐ต % = * % , = % XC 2020
Proof Let ๐ . , ๐ ' , โฏ , ๐ - be an independent trials process, with same ๐ ' = ๐(๐ fi nite expected value ๐ = ๐น(๐ / ) and fi nite variance / ) . ๐(| ๐ % ๐ โ ๐| โฅ ๐) โ 0 , as ๐ โ +โ . ๐ญ ๐ป ๐ = ๐ โค ๐ ' ๐ - ๐ ๐ ๐ โ ๐ โฅ ๐ ๐๐ ' = ๐ ๐ ๐พ ๐ป ๐ ๐ โ +โ ๐ ๐ ๐ ' ๐ธ(|๐ โ ๐| โฅ ๐ป) โค ๐ ๐ ๐๐ ' โ 0 ๐ป ๐ XC 2020
Law of Large Numbers con convergence ce of of the the sa sample me mean (Strong) Law of Large ๐ % Numbers ๐ lim ๐ = ๐ = 1 %โ) (Weak) %โ) ๐( ๐ % Law of Large lim ๐ โ ๐ < ๐) = 1 Numbers XC 2020
Example 3 Consider the general Bernoulli trial process. ยง As usual, we let ๐ = 1 if the outcome is a success and 0 if it is a failure. ยง Expect cted value ๐ญ(๐) I ๐ฆ๐(๐ฆ) = 1ร๐ + 0ร 1 โ ๐ = ๐ Bernoulli Ber tria t ial +โ- ๐, ๐ = 1 ๐ ๐ฆ = L 1 โ ๐, ๐ = 0 Variance ce ๐ ๐ ๐น ๐ $ โ ๐ $ = ๐ โ ๐ $ = ๐(1 โ ๐) XC 2020
Example 3 Now consider ๐ Bernoulli trials. ยง ' $ Then ๐ % = โ ./" % ๐ . is the number of successes in ๐ trials and ๐ = ๐น = ๐น ๐ . = ๐ . ยง % La Law o of La Large N Numbers -โ2 ๐( ๐ - lim ๐ โ ๐ < ๐) = 1 ๐ = ๐ -โ2 ๐( ๐ - lim ๐ โ ๐ < ๐) = 1 XC 2020
Coin Tossing ๐ โ +โ ๐ = 1 2 ๐ " + ๐ $ + โฏ + ๐ % ๐ XC 2020
Dice Rolling ๐ โ +โ ๐ = 7 2 ๐ " + ๐ $ + โฏ + ๐ % ๐ XC 2020
Bernoulli Trials We can start with a random experiment about which little can be predicted and, by taking averages, obtain an experiment in which the outcome can be predicted with a high degree of certainty. XC 2020
๐ต % = ' $ ๐ % = ๐ " + ๐ $ + โฏ + ๐ % , % Law of La La Large ge Number bers ๐ ๐ต % = * # ๐น ๐ต % = ๐ , % frequency as interpretation of probability ยง convergence of the sa sample mea m ean ยง โค ๐ $ ๐ % ๐ ๐ โ ๐ โฅ ๐ ๐๐ $ XC 2020
LAW W OF OF LARGE GE NU NUMBE MBERS FOR OR CONT ONTINU NUOU OUS RAND NDOM OM VARIABL BLES continuous random variables XC 2020
Let ๐ be a continuous random variable with density function finite fi te exp xpecte ted ๐(๐ฆ) . This is a sample text. va value Suppose ๐ has a finite Insert your desired text expected value ๐ = ๐น(๐) and here. This is a sample text. ๐ ' = ๐(๐) . fintite variance Insert your desired text Then for any positive ๐ > 0 we here. fi finite te vari riance have ๐ธ(|๐ โ ๐| โฅ ๐ป) ๐ ๐ ๐ป ๐ Chebyshev Ch ๐ธ(|๐ โ ๐| โฅ ๐ป) โค ๐ ๐ inequalit in ity ๐ป ๐ XC 2020
Law of Large Numbers ยง Let ๐ " , ๐ $ , โฏ , ๐ % be an independent trials process with a continuous density function ๐ , fi ni nite te expected value ๐ and fi ni nite te variance ๐ $ . ยง Let ๐ % = ๐ " + ๐ $ + โฏ + ๐ % . Then for any ๐ > 0 , ๐(| ' $ % โ ๐| โฅ ๐) โ 0 , as ๐ โ +โ . ยง Equivalently, %โ) ๐( ' $ % โ ๐ < ๐) = 1 . lim , ! As - is an average of the individual outcomes, the LLN is ! often referred to as the la law of averages . XC 2020
Example 4 Suppose we choose at random ๐ numbers from the interval [0, 1] with uniform ยง distribution. Let ๐ . describes the ๐ th choice. ยง Expect cted value ๐ญ(๐) ๐น ๐ = 1 2 ๐ + ๐ = 1 2 0 + 1 = 1 2 Un Unifor orm distribu bution on 1 ๐ ๐ฆ = ๐ โ ๐ , ๐ โค ๐ฆ โค ๐ Variance ce ๐ ๐ ๐ ๐ = ๐น ๐ $ โ ๐ $ ๐ ๐ฆ = 1, 0 โค ๐ฆ โค 1 = 1 12 (๐ โ ๐) $ = 1 12 (1 โ 0) $ = 1 12 XC 2020
Example 4 Suppose we choose at random ๐ numbers from the interval [0, 1] with uniform ยง distribution. Let ๐ . describes the ๐ th choice and ๐ % = โ ./" % ๐ . . ยง Expect cted value Ch Chebyshev Inequ quality ๐ญ(๐ % ๐ ) = 1 ๐(|๐ โ ๐| โฅ ๐) โค ๐ $ 2 ๐ $ ๐ = " $ , ๐ $ = " "$ Variance ce ๐ % ๐ โ 1 1 ๐ 2 โฅ ๐ โค 12๐๐ $ ๐ ๐ % 1 = ๐ 12๐ XC 2020
XC 2020
Recommend
More recommend