math 20 probability
play

MATH 20: PROBABILITY Fundamental Theorems of Probability Theory - PowerPoint PPT Presentation

MATH 20: PROBABILITY Fundamental Theorems of Probability Theory Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020 Fundamental Theorems of Probability Theory 4 5 Central Li Ce Limit 8 Th Theo eorem em 3 2 6 7 1 Law of La La


  1. MATH 20: PROBABILITY Fundamental Theorems of Probability Theory Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020

  2. Fundamental Theorems of Probability Theory 4 5 Central Li Ce Limit 8 Th Theo eorem em 3 2 6 7 1 Law of La La Large ge Numbers Nu XC 2020

  3. La Law of La Large ge Number bers frequency as interpretation of probability ยง convergence of the sa sample m mea ean ยง XC 2020

  4. LAW W OF OF LARGE GE NU NUMBE MBERS FOR OR DISCRETE RAND NDOM OM VARIABL BLES discrete random variables XC 2020

  5. Let ๐‘Œ be a nonnegative discrete random variable with expected value ๐น(๐‘Œ) , and let This is a sample text. ๐œ > 0 be any positive number. Then Insert your desired text here. This is a sample text. Insert your desired text here. ๐‘Œ : : nonnegative ๐‘„(๐‘Œ โ‰ฅ ๐œ) ๐น(๐‘Œ) ๐œ Markov Ma ๐‘ธ(๐’€ โ‰ฅ ๐œป) โ‰ค ๐‘ญ(๐’€) inequ in quality ity ๐œป XC 2020

  6. Proof Let ๐‘Œ be a po posi sitive discrete random variable with expected value ๐น(๐‘Œ) , and let ๐œ > 0 be any positive number. ๐‘ธ(๐’€ โ‰ฅ ๐œป) โ‰ค ๐‘ญ(๐’€) ๐œป + ๐’(๐’š) = ๐Ÿ ๐‘„ ๐‘Œ โ‰ฅ ๐œ = + ๐‘›(๐‘ฆ) ๐’š !"# ๐‘ญ ๐’€ = + ๐’š๐’(๐’š) โ‰ฅ + ๐’š๐’ ๐’š โ‰ฅ ๐œป + ๐’ ๐’š = ๐œป๐‘„ ๐‘Œ โ‰ฅ ๐œ & ๐’š๐’(๐’š) = ๐‘ญ(๐’€) ๐’š ๐’š"๐œป ๐’š"๐œป ๐’š XC 2020

  7. Let ๐‘Œ be a discrete random variable with expected ๐œ ' = ๐‘Š(๐‘Œ) , value ๐œˆ = ๐น(๐‘Œ) and variance and let ๐œ > 0 be any positive number. Then This is a sample text. Insert your desired text here. This is a sample text. Insert your desired text here. ๐‘Œ : : not t necessarily ๐‘ธ(|๐’€ โˆ’ ๐‚| nonne no nnegative ve โ‰ฅ ๐œป) ๐‰ ๐Ÿ‘ ๐œป ๐Ÿ‘ Chebyshev Ch ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ inequalit in ity ๐œป ๐Ÿ‘ XC 2020

  8. Proof Let X be a discrete random variable with expected value ๐œˆ = ๐น(๐‘Œ) ๐œ ' = ๐‘Š(๐‘Œ) , and variance and let ๐œ > 0 be any positive number. ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ ๐œป ๐Ÿ‘ + ๐’(๐’š) = ๐Ÿ ๐‘„(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) = + ๐‘›(๐‘ฆ) ๐’š |๐’š)๐‚|"๐œป ๐œ ' = ๐‘Š ๐‘Œ = + (๐‘ฆ โˆ’ ๐œˆ) ' ๐‘›(๐‘ฆ) โ‰ฅ ๐‘ฆ โˆ’ ๐œˆ ' ๐‘› ๐‘ฆ + ! !)+ "# (๐’š โˆ’ ๐‚) ๐Ÿ‘ ๐’(๐’š) = ๐‘พ(๐’€) & โ‰ฅ ๐œ ' ๐‘› ๐‘ฆ = ๐œ ' ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) + ๐’š !)+ "# XC 2020

  9. Ma Markov ๐‘ธ(๐’€ โ‰ฅ ๐œป) โ‰ค ๐‘ญ(๐’€) in inequ quality ity ๐œป ๐‘Œ : : nonnegative ๐‘ญ(๐’€) : kn known Chebyshev Ch ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ inequalit in ity ๐œป ๐Ÿ‘ ๐‘Œ : : not t necessarily ๐‘ญ(๐’€) : kn known ๐‘พ(๐’€) : kn known no nonne nnegative ve XC 2020

  10. Example 1 ยง Let ๐‘Œ be any random variable which takes on values 0, 1, 2, โ‹ฏ , ๐‘œ and has ๐น(๐‘Œ) = ๐‘Š (๐‘Œ) = 1 . Show that for any positive integer ๐‘™ , ๐‘„(๐‘Œ โ‰ฅ ๐‘™ + 1) โ‰ค " # # . Ma Markov kov Inequality Ch Chebys byshev Inequality ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ‰ค ๐œ $ ๐‘„(๐‘Œ โ‰ฅ ๐œ) โ‰ค ๐น(๐‘Œ) ๐œ ๐œ $ XC 2020

  11. Example 1 ยง Let ๐‘Œ be any random variable which takes on values 0, 1, 2, โ‹ฏ , ๐‘œ and has ๐น(๐‘Œ) = ๐‘Š (๐‘Œ) = 1 . Show that for any positive integer ๐‘™ , ๐‘„(๐‘Œ โ‰ฅ ๐‘™ + 1) โ‰ค " # # . Ch Chebyshev Inequ quality ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ‰ค ๐œ ' ๐œ ' ๐œˆ = ๐œ ' = 1 , ๐œ = ๐‘™ ๐‘„ ๐‘Œ โˆ’ 1 โ‰ฅ ๐‘™ = ๐‘„(๐‘Œ โ‰ฅ ๐‘™ + 1) โ‰ค 1 ๐‘™ ' XC 2020

  12. Example 2 ยง Choose ๐‘Œ with distribution โˆ’๐œ ๐œ . ๐‘› ๐‘ฆ = " " $ $ Ch Chebyshev Inequ quality ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ‰ค ๐œ ' ๐‘„ ๐‘Œ โ‰ฅ ๐œ = 1 ๐œ ' ๐œˆ = 0 , ๐œ ' = ๐œ ' ๐‘„ ๐‘Œ โ‰ฅ ๐œ โ‰ค ๐œ ' ๐œ ' = 1 XC 2020

  13. Law of Large Numbers ยง Let ๐‘Œ " , ๐‘Œ $ , โ‹ฏ , ๐‘Œ % be an independent trials process, with same fi nite expected value ๐œ $ = ๐‘Š(๐‘Œ & ) and fi nite variance & ) . ๐œˆ = ๐น(๐‘Œ ยง Let ๐‘‡ % = ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % . Then for any ๐œ > 0 , Large ๐‘„(| ' $ % โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ†’ 0 , as ๐‘œ โ†’ +โˆž . Numbers ยง Equivalently, %โ†’) ๐‘„( ' $ % โˆ’ ๐œˆ < ๐œ) = 1 . lim , ! As - is an average of the individual outcomes, the LLN is ! often referred to as the la law of averages . XC 2020

  14. Law of Large Numbers ยง Let ๐‘Œ " , ๐‘Œ $ , โ‹ฏ , ๐‘Œ % be an independent trials process with ๐น ๐‘Œ & = ๐œˆ and ๐‘Š ๐‘Œ & = ๐œ $ . ยง Let ๐‘‡ % = ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % be the sum, ๐‘œ โ†’ +โˆž ๐ต % = ' $ and % be the average. Then ๐น ๐ต % = ๐œˆ = ๐‘Š ๐ต % โ†’ 0 ๐ธ ๐ต % โ†’ 0 ๐‘Š ๐ต % = * # ๐ธ ๐ต % = * % , = % XC 2020

  15. Proof Let ๐‘Œ . , ๐‘Œ ' , โ‹ฏ , ๐‘Œ - be an independent trials process, with same ๐œ ' = ๐‘Š(๐‘Œ fi nite expected value ๐œˆ = ๐น(๐‘Œ / ) and fi nite variance / ) . ๐‘„(| ๐‘‡ % ๐‘œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ†’ 0 , as ๐‘œ โ†’ +โˆž . ๐‘ญ ๐‘ป ๐’ = ๐‚ โ‰ค ๐œ ' ๐‘‡ - ๐’ ๐‘„ ๐‘œ โˆ’ ๐œˆ โ‰ฅ ๐œ ๐‘œ๐œ ' = ๐‰ ๐Ÿ‘ ๐‘พ ๐‘ป ๐’ ๐‘œ โ†’ +โˆž ๐’ ๐’ ๐œ ' ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ ๐‘œ๐œ ' โ†’ 0 ๐œป ๐Ÿ‘ XC 2020

  16. Law of Large Numbers con convergence ce of of the the sa sample me mean (Strong) Law of Large ๐‘‡ % Numbers ๐‘„ lim ๐‘œ = ๐œˆ = 1 %โ†’) (Weak) %โ†’) ๐‘„( ๐‘‡ % Law of Large lim ๐‘œ โˆ’ ๐œˆ < ๐œ) = 1 Numbers XC 2020

  17. Example 3 Consider the general Bernoulli trial process. ยง As usual, we let ๐‘Œ = 1 if the outcome is a success and 0 if it is a failure. ยง Expect cted value ๐‘ญ(๐’€) I ๐‘ฆ๐‘›(๐‘ฆ) = 1ร—๐‘ž + 0ร— 1 โˆ’ ๐‘ž = ๐‘ž Bernoulli Ber tria t ial +โˆˆ- ๐‘ž, ๐‘Œ = 1 ๐‘› ๐‘ฆ = L 1 โˆ’ ๐‘ž, ๐‘Œ = 0 Variance ce ๐‘Š ๐‘Œ ๐น ๐‘Œ $ โˆ’ ๐œˆ $ = ๐‘ž โˆ’ ๐‘ž $ = ๐‘ž(1 โˆ’ ๐‘ž) XC 2020

  18. Example 3 Now consider ๐‘œ Bernoulli trials. ยง ' $ Then ๐‘‡ % = โˆ‘ ./" % ๐‘Œ . is the number of successes in ๐‘œ trials and ๐œˆ = ๐น = ๐น ๐‘Œ . = ๐‘ž . ยง % La Law o of La Large N Numbers -โ†’2 ๐‘„( ๐‘‡ - lim ๐‘œ โˆ’ ๐œˆ < ๐œ) = 1 ๐œˆ = ๐‘ž -โ†’2 ๐‘„( ๐‘‡ - lim ๐‘œ โˆ’ ๐‘ž < ๐œ) = 1 XC 2020

  19. Coin Tossing ๐‘œ โ†’ +โˆž ๐œˆ = 1 2 ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % ๐‘œ XC 2020

  20. Dice Rolling ๐‘œ โ†’ +โˆž ๐œˆ = 7 2 ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % ๐‘œ XC 2020

  21. Bernoulli Trials We can start with a random experiment about which little can be predicted and, by taking averages, obtain an experiment in which the outcome can be predicted with a high degree of certainty. XC 2020

  22. ๐ต % = ' $ ๐‘‡ % = ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % , % Law of La La Large ge Number bers ๐‘Š ๐ต % = * # ๐น ๐ต % = ๐œˆ , % frequency as interpretation of probability ยง convergence of the sa sample mea m ean ยง โ‰ค ๐œ $ ๐‘‡ % ๐‘„ ๐‘œ โˆ’ ๐œˆ โ‰ฅ ๐œ ๐‘œ๐œ $ XC 2020

  23. LAW W OF OF LARGE GE NU NUMBE MBERS FOR OR CONT ONTINU NUOU OUS RAND NDOM OM VARIABL BLES continuous random variables XC 2020

  24. Let ๐‘Œ be a continuous random variable with density function finite fi te exp xpecte ted ๐‘”(๐‘ฆ) . This is a sample text. va value Suppose ๐‘Œ has a finite Insert your desired text expected value ๐œˆ = ๐น(๐‘Œ) and here. This is a sample text. ๐œ ' = ๐‘Š(๐‘Œ) . fintite variance Insert your desired text Then for any positive ๐œ > 0 we here. fi finite te vari riance have ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) ๐‰ ๐Ÿ‘ ๐œป ๐Ÿ‘ Chebyshev Ch ๐‘ธ(|๐’€ โˆ’ ๐‚| โ‰ฅ ๐œป) โ‰ค ๐‰ ๐Ÿ‘ inequalit in ity ๐œป ๐Ÿ‘ XC 2020

  25. Law of Large Numbers ยง Let ๐‘Œ " , ๐‘Œ $ , โ‹ฏ , ๐‘Œ % be an independent trials process with a continuous density function ๐‘” , fi ni nite te expected value ๐œˆ and fi ni nite te variance ๐œ $ . ยง Let ๐‘‡ % = ๐‘Œ " + ๐‘Œ $ + โ‹ฏ + ๐‘Œ % . Then for any ๐œ > 0 , ๐‘„(| ' $ % โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ†’ 0 , as ๐‘œ โ†’ +โˆž . ยง Equivalently, %โ†’) ๐‘„( ' $ % โˆ’ ๐œˆ < ๐œ) = 1 . lim , ! As - is an average of the individual outcomes, the LLN is ! often referred to as the la law of averages . XC 2020

  26. Example 4 Suppose we choose at random ๐‘œ numbers from the interval [0, 1] with uniform ยง distribution. Let ๐‘Œ . describes the ๐‘— th choice. ยง Expect cted value ๐‘ญ(๐’€) ๐น ๐‘Œ = 1 2 ๐‘ + ๐‘ = 1 2 0 + 1 = 1 2 Un Unifor orm distribu bution on 1 ๐‘” ๐‘ฆ = ๐‘ โˆ’ ๐‘ , ๐‘ โ‰ค ๐‘ฆ โ‰ค ๐‘ Variance ce ๐‘Š ๐‘Œ ๐‘Š ๐‘Œ = ๐น ๐‘Œ $ โˆ’ ๐œˆ $ ๐‘” ๐‘ฆ = 1, 0 โ‰ค ๐‘ฆ โ‰ค 1 = 1 12 (๐‘ โˆ’ ๐‘) $ = 1 12 (1 โˆ’ 0) $ = 1 12 XC 2020

  27. Example 4 Suppose we choose at random ๐‘œ numbers from the interval [0, 1] with uniform ยง distribution. Let ๐‘Œ . describes the ๐‘— th choice and ๐‘‡ % = โˆ‘ ./" % ๐‘Œ . . ยง Expect cted value Ch Chebyshev Inequ quality ๐‘ญ(๐‘‡ % ๐‘œ ) = 1 ๐‘„(|๐‘Œ โˆ’ ๐œˆ| โ‰ฅ ๐œ) โ‰ค ๐œ $ 2 ๐œ $ ๐œˆ = " $ , ๐œ $ = " "$ Variance ce ๐‘‡ % ๐‘œ โˆ’ 1 1 ๐‘„ 2 โ‰ฅ ๐œ โ‰ค 12๐‘œ๐œ $ ๐‘Š ๐‘‡ % 1 = ๐‘œ 12๐‘œ XC 2020

  28. XC 2020

Recommend


More recommend