mapping hot gas in the universe using the sunyaev
play

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect - PowerPoint PPT Presentation

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect Eiichiro Komatsu (Max-Planck-Institut fr Astrophysik) Probing Fundamental Physics with CMB Spectral Distortions , CERN March 12, 2018 Happy (belated; March 1) 75th


  1. Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) “ Probing Fundamental Physics with CMB Spectral Distortions ”, CERN March 12, 2018

  2. Happy (belated; March 1) 75th birthday, Rashid!

  3. Where is a galaxy cluster? Subaru image of RXJ1347-1145 (Medezinski et al. 2010) 3 http://wise-obs.tau.ac.il/~elinor/clusters

  4. Where is a galaxy cluster? Subaru image of RXJ1347-1145 (Medezinski et al. 2010) 4 http://wise-obs.tau.ac.il/~elinor/clusters

  5. Subaru Subaru image of RXJ1347-1145 (Medezinski et al. 2010) 5 http://wise-obs.tau.ac.il/~elinor/clusters

  6. Hubble Hubble image of RXJ1347-1145 (Bradac et al. 2008) 6

  7. Chandra Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012) 7

  8. ALMA! 1 σ =17 μ Jy/beam =120 μ K CMB 5” resolution T. Kitayama Chandra X-ray image of RXJ1347-1145 (Johnson et al. 2012) ALMA Band-3 Image of the Sunyaev-Zel’dovich effect at 92 GHz (Kitayama et al. 2016) 8

  9. A clear displacement between the X-ray and SZ images. What is going on? 9

  10. 10

  11. Multi-wavelength Data Z σ T k B Z dl n 2 I X = e Λ ( T X ) I SZ = g ν dl n e T e m e c 2 Optical: X-ray: SZ [microwave]: •10 2–3 galaxies •hot gas (10 7–8 K) •hot gas (10 7-8 K) •velocity dispersion •spectroscopic T X •electron pressure •gravitational lensing •Intensity ~ n e2 L •Intensity ~ n e T e L

  12. A Story about RXJ1347–1145 • Let me tell you a little story about this particular cluster, which highlights the unique power of the SZ data to study cluster astrophysics • A massive cluster with 10 15 M sun at z=0.45 • The most X-ray luminous galaxy cluster found in the ROSAT All Sky Survey • Very compact, “cool core” cluster 12

  13. 1997 ROSAT/HRI image [Schindler et al.] 5” resolution • 0.1–2.4 keV • Looked pretty “spherical” • Thought to be a typical, relaxed, cooling-flow cluster 13

  14. 2001 SZ w/ Nobeyama [Komatsu et al.] 12” resolution • The highest angular resolution SZ mapping at that time • (The record holder Chandra X-ray image of RXJ1347-1145 for a decade) (Johnson et al. 2012) • A surprise!

  15. 2001 SZ w/ Nobeyama [Komatsu et al.] 12” resolution • The highest angular resolution SZ mapping at that time • (The record holder Chandra X-ray image of RXJ1347-1145 for a decade) (Johnson et al. 2012) • A surprise!

  16. 2002 X-ray w/ Chandra [Allen et al.] • 0.5–7 keV • An excess X-ray emission found at the location of the SZ excess • A hot gas, missed by ROSAT due to the lack of sensitivity at high energies!

  17. A lesson learned • X-ray observations are band-limited • They are not usually not sensitive to very hot gas with temperature >10(1+z) keV • SZ observations are not band-limited • They are in principle sensitive to arbitrarily high temperatures (more precisely, pressure) • SZ data probe electron pressure: a good probe of shock-heated gas due to mergers • RXJ1347–1145 was thought to be a relaxed cluster. Our Nobeyama data challenged it, and now it is 17 accepted that this cluster is a merging system!

  18. We have ALMA. Now what? • What is a new science we can do with such high resolution, high sensitivity measurements? • Finding shocks and hot clumps is fun, but can we do something new and more quantitative? • One example: Pressure fluctuations 18

  19. Let’s subtract X-ray a smooth component SZ 19

  20. Ueda et al., in prep Let’s subtract X-ray a smooth component SZ 20

  21. Ueda et al., in prep Let’s subtract X-ray a smooth component Gas density is stirred SZ (“sloshed”), but no change in pressure! Not sound waves => Unique measurements of the effective equation of state of density fluctuations 21

  22. Full-sky Thermal Pressure Map North Galactic Pole South Galactic Pole 22 Planck Collaboration

  23. We can simulate this Klaus Dolag (MPA/LMU) arXiv:1509.05134 [MNRAS, 463 , 1797 (2016)] • Volume: (896 Mpc/h) 3 • Cosmological hydro (P-GADGET3) with star formation and AGN feed back • 2 x 1526 3 particles (m DM =7.5x10 8 M sun /h) 23

  24. Dolag, EK, Sunyaev (2016) 24

  25. • “The local universe simulation” reproduces the observed structures pretty well 25

  26. Dolag, EK, Sunyaev (2016) 1-point PDF fits!! 26

  27. Dolag, EK, Sunyaev (2016) Power spectrum fits!! provided that we use: Ω m = 0 . 308 σ 8 = 0 . 8149 27

  28. Simple Interpretation C l [not “l 2 C l ”] multipole • Randomly-distributed point sources = Poisson spectrum = ∑ i (flux i ) 2 / 4 π 28

  29. Simple Interpretation C l [not “l 2 C l ”] multipole • Extended sources = the power spectrum reflects intensity profiles 29

  30. l(l+1)C l /2 π [ μ K 2 ] >5x10 13 M sun >5x10 14 M sun Adding smaller clusters >10 15 M sun >2x10 15 M sun Multipole 30

  31. Simple Formula dz dV dM dn Z Z dM | y ` ( M, z ) | 2 C ` = dz 2d Fourier transform of pressure • y l with small l just gives the total thermal pressure, MT ~ M 5/3 • Heavily weighted by massive clusters • The mass function, dn/dM, is sensitive to the amplitude of fluctuations, σ 8 31

  32. Degree-scale SZ power spectrum 1999 is less sensitive to astrophysics in cluster cores 32 Komatsu & Kitayama (1999)

  33. 2014 confirmed by simulations with varying AGN feedback 33 McCarthy et al. (2014)

  34. It is very sensitive to the amplitude of fluctuations 1999 Komatsu & Kitayama (1999) 34 Komatsu & Seljak (2002)

  35. 2014 tension? Planck13 parameters 35 McCarthy et al. (2014)

  36. 2014 similar to planck15 Planck13 parameters 36 McCarthy et al. (2014)

  37. Dolag, EK, Sunyaev (2016) C ` ∝ Ω 3 m σ 8 8 Ω m = 0 . 308 Ω m = 0 . 315 vs σ 8 = 0 . 8149 σ 8 = 0 . 829 37

  38. Dolag, EK, Sunyaev (2016) C ` ∝ Ω 3 m σ 8 8 Ω m = 0 . 308 Ω m = 0 . 315 vs ~20% too large σ 8 = 0 . 8149 σ 8 = 0 . 829 38

  39. Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the measurements B. Bolliet • The compton-Y power spectrum of Planck contains various foreground sources • What you saw as the data points were the raw data minus the best- with trispecturm fitting foreground components without • When fitting, the Planck team used Gaussian covariance ignoring the trispectrum term • How does this affect the results? 39

  40. Bolliet, Comis, EK, Macias-Perez (2017) tSZ power slightly lower without with trispecturm 40

  41. Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the parameter dependence Mass σ 8 Hubble Bias n s w Ω m 41

  42. Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the parameter dependence 2.6% measurement! Essentially cosmological model-independent 42

  43. Bolliet, Comis, EK, Macias-Perez (2017) Closer look at the parameter dependence 2.6% measurement! Essentially cosmological model-independent 43

  44. <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> <latexit sha1_base64="jG4q3CLuBbOdwxz2VYtq2xgJvfo=">ACD3icbZC7SgNBFIZn4y3G26qlzWAQLSTuiqIWQoiNjRDBmEASwuzkJBkye2HmrBCWfQbX8XGQsXW1s63cXIRNPrDwMd/zuHM+b1ICo2O82lZmbn5heyi7ml5ZXVNXt941aHseJQ4aEMVc1jGqQIoICJdQiBcz3JFS9/sWwXr0DpUY3OAgqbPuoHoCM7QWC17t4FCtoFetZJjx+EpPf/G/aShfIoqhjQ9KLXsvFNwRqJ/wZ1AnkxUbtkfjXbIYx8C5JpXedCJsJUyi4hDTXiDVEjPdZF+oGA+aDbiajg1K6Y5w27YTKvADpyP05kTBf64HvmU6fYU9P14bmf7V6jJ3TZiKCKEYI+HhRJ5YUQzpMh7aFAo5yYIBxJcxfKe8xTiaDHMmBHf65L9QOSycFdzro3yxNEkjS7bINtkjLjkhRXJyqRCOLknj+SZvFgP1pP1ar2NWzPWZGaT/JL1/gUgTpr4</latexit> Planck Mass Bias dz dV dM dn Z Z dM | y ` ( M, z ) | 2 C ` = dz • The key ingredient of the power spectrum is a profile of thermal pressure of electrons ˜ M 500 c = M 500 c, true /B 44

Recommend


More recommend