majoron dark matter and constraints on the majoron
play

Majoron Dark Matter and Constraints on the Majoron-Neutrino Coupling - PowerPoint PPT Presentation

TIII / Physics Majoron Dark Matter and Constraints on the Majoron-Neutrino Coupling Tim Brune The quest for new physics December 2018 Tim Brune, December 2018 TIII / Singlet Majoron Model Physics Motivation What it is the origin of


  1. TIII / Physics Majoron Dark Matter and Constraints on the Majoron-Neutrino Coupling Tim Brune The quest for new physics December 2018 Tim Brune, December 2018

  2. TIII / Singlet Majoron Model Physics Motivation What it is the origin of (small) neutrino masses? What is dark matter? The Majoron Model Chikashige, Mohapatra, and Peccei D. 1981 Majoron: Goldstone boson from spontaneous breaking of global U ( 1 ) B − L Small left-handed neutrino masses via Seesaw mechanism Majoron mass → dark matter? Constraints for m J = 0: Kachelriess, Tomas, and Valle. 2000, Tomas, P¨ as, and Valle. 2001 Constraints on non-standard Majoron models: Cepedello et al. 2018 Constraints on Majoron-Neutrino couplings from SN data and 0 νββ J for m J � = 0? Brune and P¨ as. 2018. eprint: 1808.08158 Tim Brune, December 2018 1/10

  3. TIII / Singlet Majoron Model Physics Symmetry Breaking Add three right-handed neutrinos N R and a singlet complex scalar σ , L ( σ ) = − 2, to SM: LyN R H − 1 L = − ¯ N c ¯ R λ N R σ + h.c. 2 1 ( f + σ 0 + i J ) SSB at Seesaw-scale f : σ = √ 2 1 i L ⊃ − ¯ N c ¯ N c ¯ LyN R H − √ R λ N R f − √ R λ N R J + h.c. 2 2 2 2 � �� � � �� � mass term: M R = λ f interaction √ 2 SSB at electroweak scale v 1 i N c ¯ N c ¯ L ⊃ − ν L yN R v ¯ − √ R λ N R f − √ R λ N R J + h.c. 2 2 2 2 � �� � mass term: m D = yv � �� � � �� � √ 2 mass term: M R = λ f interaction √ 2 Pilaftsis. 1994 Tim Brune, December 2018 2/10

  4. TIII / Singlet Majoron Model Physics Seesaw Mechanism Majorana mass M R = λ f , Dirac mass m D = yv √ √ 2 2 Neutrino masses in the Seesaw limit M R ≫ m D m light ≈ − m D m T D m heavy ≈ M R ≪ M R M R Couplings of the Majoron to light neutrinos 3 � L light = g ii ¯ ν i γ 5 ν i J J i Minkowski. 1977 Tim Brune, December 2018 3/10

  5. TIII / Dark Matter Physics Majoron Dark Matter via Freeze-In Explicit U ( 1 ) B − L breaking term → m 2 J = λ h v 2 � � − 1 1 + h L H = λ h σ 2 H † H + h.c. ⊃ 2 m 2 J J 2 v ���� SSB Majoron relic density Ω J h 2 ≈ 2 1 . 09 × 10 27 m J Γ( h → JJ ) . � g s m 2 g ρ ∗ ∗ h Majoron DM: m J ≈ 2 . 8 MeV For f ≈ 10 9 GeV: τ J > τ universe → stable Hall et al. 2010 Frigerio, Hambye, and Masso. 2011 Tim Brune, December 2018 4/10

  6. TIII / Constraints Physics Supernova Constraints Luminosity Constraints In the SN core: neutrinos acquire effective Model predictions are compatible with masses due to interactions with the neutrino signal from SN1987A background medium ⇒ νν → J is allowed Neutrinos carry away most of the binding energy E B ≈ 3 · 10 53 erg Deleptonization Constraints s Successful SN explosion requires Majoron carries away binding energy via Y L = Y e + Y ν e ≥ 0 . 375 νν → J Agreement with signal: Majoron ν e ν e ,α → J lower Y L , α = µ, τ luminosity L J < L tot ν Bruenn. 1985 Similar aprroach:Heurtier and Zhang. 2017 Constraints on g ( m J ) Data: Kamiokande-II. 1987, IMB. 1987, Baksan. 1987 Tim Brune, December 2018 5/10

  7. TIII / Constraints Physics Supernova Constraints 10 � 5 DM � α = µ, τ ✠ � 10 � 7 � g ΑΑ � Luminosity � g ΑΒ � 10 � 9 � g ee � Deleptonization � g Α e � Luminosity 10 � 11 � g ee � Luminosity 10 � 13 1 10 100 1000 m J MeV Brune and P¨ as. 2018, see also Heurtier and Zhang. 2017 Data: Kamiokande-II. 1987, IMB. 1987, Baksan. 1987, Bruenn. 1985 Tim Brune, December 2018 6/10

  8. TIII / Constraints Physics a.u. 1.2 0 νββ J Constraints 0 ΝΒΒ J, m J � 0 1.0 0 ΝΒΒ J, m J � m e 0.8 Γ J = G J ( Q , Z , m J ) | g ee ( m J ) | 2 | M J | 2 0 ΝΒΒ J, m J � 2m e 0.6 0 ΝΒΒ J, m J � 3m e u L u L 0 ΝΒΒ J, m J � 4m e d L d L 0.4 2 ΝΒΒ W W 0.2 e − e − T 0.0 0.5 1.0 1.5 2.0 2.5 3.0 MeV ν ν J J G � m J � G � 0 � e − e − 1.0 W W u L u L d L d L 48 Ca 0.8 136 Xe 0.6 Georgi, Glashow, and Nussinov. 1981 100 Mo 0.4 150 Nd Constraints: 0.2 Reduced signal-to-background ratio m J Decreasing phase space: MeV 1 2 3 4 G J ( m J ) → 0 as m J → Q NEMO-3. 48Ca. 2016, EXO-200. 136Xe. 2014, NEMO-3. 100Mo. 2014, see also Blum, Nir, and Shavit. 2018 NEMO-3. 150Nd. 2016 Tim Brune, December 2018 7/10

  9. TIII / Constraints Physics 0 νββ J Constraints � g ee � 0.1 48 Ca 0.01 136 Xe 0.001 100 Mo 150 Nd 10 � 4 ✒ � � 10 � 5 DM m J 10 � 6 MeV 0.2 0.5 1.0 2.0 Brune and P¨ as. 2018, see also Blum, Nir, and Shavit. 2018 Data: NEMO-3. 48 Ca. 2016, EXO-200. 136 Xe. 2014, NEMO-3. 100 Mo. 2014, NEMO-3. 150 Nd. 2016 Tim Brune, December 2018 8/10

  10. TIII / Constraints Physics Combined Constraints � g ee � 0.1 10 � 4 ✒ � � DM 10 � 7 10 � 10 m J 10 � 13 MeV 0.2 0.5 1.0 2.0 5.0 48 Ca � g ee � Luminosity Brune and P¨ as. 2018 Tim Brune, December 2018 9/10

  11. TIII / Conclusion Physics Conclusion and Outlook The Majoron can explain the origin of neutrino masses on the basis of spontaneous symmetry breaking of a global U ( 1 ) B − L If massive, the Majoron is a dark matter candidate For m J ≈ 0 . 1 MeV − 1 GeV, a large range of couplings is excluded from SN data Neutrinoless double beta decay excludes couplings g ee ≥ 10 − 4 for m J ≈ 1 MeV Properly include background in 0 νββ J limits for m J > 0 Future 0 νββ J experiments and observations of SN can exclude larger regions Tim Brune, December 2018 10/10

Recommend


More recommend