m ovoids of regular near polygons
play

m -ovoids of regular near polygons Jesse Lansdown joint work with - PowerPoint PPT Presentation

m -ovoids of regular near polygons Jesse Lansdown joint work with John Bamberg and Melissa Lee Lehrstuhl B f ur Mathematik, RWTH Aachen University 10-16/9/2017, Finite Geometries, Irsee, Germany Jesse Lansdown m -ovoids of regular near


  1. m -ovoids of regular near polygons Jesse Lansdown joint work with John Bamberg and Melissa Lee Lehrstuhl B f¨ ur Mathematik, RWTH Aachen University 10-16/9/2017, Finite Geometries, Irsee, Germany Jesse Lansdown m -ovoids of regular near polygons 1 / 18

  2. near polygons A near polygon or 2 d -gon is an incidence geometry which satisfies: Any two points on at most one line. Diameter of collinearity graph is d . Given a line ℓ and non-incident point P , there is a unique nearest path from P to a point on ℓ (wrt to the collinearity graph). P ℓ Jesse Lansdown m -ovoids of regular near polygons 2 / 18

  3. Regular near polygons If a near polygon has parameters ( s , t 2 , . . . , t d − 1 , t ) such that: each point is incident with t + 1 lines, each line is incident with s + 1 points, if x and y are points such that d ( x , y ) = i , then there are t i + 1 lines on y with a point at distance i − 1 from x . Equivalently, they have distance regular collinearity graphs, with intersection numbers: a i = ( s − 1)( t i + 1) , b i = s ( t − t i ) , c i = t i + 1 Jesse Lansdown m -ovoids of regular near polygons 3 / 18

  4. Regular near polygons If a near polygon has parameters ( s , t 2 , . . . , t d − 1 , t ) such that: each point is incident with t + 1 lines, each line is incident with s + 1 points, if x and y are points such that d ( x , y ) = i , then there are t i + 1 lines on y with a point at distance i − 1 from x . Equivalently, they have distance regular collinearity graphs, with intersection numbers: a i = ( s − 1)( t i + 1) , b i = s ( t − t i ) , c i = t i + 1 Example Finite dual polar spaces are regular near 2 d -gons. In particular DW (2 d − 1 , q ), DQ (2 d , q ) and DH (2 d − 1 , q 2 ) are regular near polygons. Jesse Lansdown m -ovoids of regular near polygons 3 / 18

  5. m-ovoids An m-ovoid of a near 2 d -gon is a set of points O such that every line meets exactly m elements of O . O Jesse Lansdown m -ovoids of regular near polygons 4 / 18

  6. m-ovoids An m-ovoid of a near 2 d -gon is a set of points O such that every line meets exactly m elements of O . O If m is half the number of points on a line (s+1/2), then the m -ovoid is called a hemisystem . Jesse Lansdown m -ovoids of regular near polygons 4 / 18

  7. Some m -ovoid results of dual polar spaces No 1-ovoids of DQ (4 , q ), q odd (Thas) No 1-ovoids of DQ − (5 , q ) (Thas) No 1-ovoids of DQ (3 , q ), q odd (Thas) No 1-ovoids of DH (4 , 2 2 ) (Brouwer) 1-ovoids of DQ − (7 , q ) not known 1-ovoids of DH (6 , q 2 ) not known No 1-ovoids DW (5 , q ), q even (Payne, Thas), q odd (Thomas) No 1-ovoids of generalised hexagons of order ( s , s 2 ) (De Bruyn, Vanhove) m -ovoids of DH (3 , q 2 ) are hemisystems, q odd (Segre) m -ovoids of generalised quadrangles of order ( q , q 2 ) are hemisystems, q odd (Cameron, Goethals, Seidel) m -ovoids of regular near 2 d -gons with t i + 1 = s 2 i − 1 s 2 − 1 are hemisystems (Vanhove) Jesse Lansdown m -ovoids of regular near polygons 5 / 18

  8. Prior theorems Theorem (De Bruyn, Vanhove) A regular near 2 d-gon satisfies ( s i − 1)( t i − 1 + 1 − s i − 2 ) � t i + 1 � ( s i + 1)( t i − 1 + 1 + s i − 2 ) s i − 2 − 1 s i − 2 + 1 for s , d � 2 and i ∈ { 3 , . . . , d } . Jesse Lansdown m -ovoids of regular near polygons 6 / 18

  9. Prior theorems Theorem (De Bruyn, Vanhove) A regular near 2 d-gon satisfies ( s i − 1)( t i − 1 + 1 − s i − 2 ) � t i + 1 � ( s i + 1)( t i − 1 + 1 + s i − 2 ) s i − 2 − 1 s i − 2 + 1 for s , d � 2 and i ∈ { 3 , . . . , d } . Theorem (De Bruyn, Vanhove) A regular 2 d-gon (d � 3 , s � 2 ) attaining the lower bound for i = 3 is isomorphic to DQ (2 d , q ) , DW (2 d − 1 , q ) or DH (2 d − 1 , q 2 ) . Jesse Lansdown m -ovoids of regular near polygons 6 / 18

  10. New result Theorem (Bamberg, JL, Lee) Given a 2 d-gon satisfying t i + 1 = ( s i + ( − 1) i )( t i − 1 + 1 + ( − 1) i s i − 2 ) s i − 2 + ( − 1) i a non-trivial m-ovoid is a hemisystem. Jesse Lansdown m -ovoids of regular near polygons 7 / 18

  11. Sketch of proof Fix x �∈ O . Count y , z ∈ O such that d ( x , y ) = i and • d ( y , z ) = i − 1 or • d ( y , z ) = 1 d ( x , z ) = 1 d ( x , z ) = i − 1 i x x i y y 1 i − 1 1 i − 1 z z O O Jesse Lansdown m -ovoids of regular near polygons 8 / 18

  12. Sketch of proof Counting y then z : For x and y at distance i define v x , y := s ( c i − 1 − s )( χ x + χ y ) + χ Γ 1 ( x ) ∩ Γ i − 1 ( y ) + χ Γ i − 1 ( x ) ∩ Γ 1 ( y ) Theorem v x , y .χ O = 2( s ( c i − 1 − s i − 2 )+ c i ) m (design-orthogonal) s +1 Jesse Lansdown m -ovoids of regular near polygons 9 / 18

  13. Sketch of proof Counting first y and then z , the number of pairs is � ( | Γ 1 ( x ) ∩ Γ i − 1 ( y ) ∩ O| + | Γ i − 1 ( x ) ∩ Γ 1 ( y ) ∩ O| ) y ∈O∩ Γ i ( x ) � ( v x , y − s ( c i − 1 + ( − 1) i s i − 2 )( χ x + χ y )) · χ O = y ∈O∩ Γ i ( x ) = . . . c i − 1 s 2 + ( − 1) i s i � � � i � � = mk i − 1 ( t − t i − 1 ) � − 1 2 c i ms − ( s + 1 − 2 m ) 1 − . s + 1 s c i ( s + 1) Jesse Lansdown m -ovoids of regular near polygons 10 / 18

  14. Sketch of proof Counting z then y : � � | Γ i − 1 ( z ) ∩ Γ i ( x ) ∩ O| + | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| . z ∈O∩ Γ 1 ( x ) z ∈O∩ Γ i − 1 ( x ) Jesse Lansdown m -ovoids of regular near polygons 11 / 18

  15. Sketch of proof d ( x , z ) = i − 1 , | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| =? i − 1 z x O Jesse Lansdown m -ovoids of regular near polygons 12 / 18

  16. Sketch of proof d ( x , z ) = i − 1 , | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| =? t + 1 i − 1 z x O Jesse Lansdown m -ovoids of regular near polygons 12 / 18

  17. Sketch of proof d ( x , z ) = i − 1 , | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| =? t + 1 Γ 1 ( z ) i − 1 z x O Jesse Lansdown m -ovoids of regular near polygons 12 / 18

  18. Sketch of proof d ( x , z ) = i − 1 , | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| =? t + 1 Γ 1 ( z ) i − 1 z x i − 2 i − 2 O t i − 1 + 1 Jesse Lansdown m -ovoids of regular near polygons 12 / 18

  19. Sketch of proof d ( x , z ) = i − 1 , | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| =? t + 1 Γ 1 ( z ) i − 1 z x i − 2 i − 1 i − 2 i − 1 O t i − 1 + 1 Jesse Lansdown m -ovoids of regular near polygons 12 / 18

  20. Sketch of proof d ( x , z ) = i − 1 , | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| =? t + 1 Γ 1 ( z ) i i i − 1 z x i − 2 i − 1 i − 2 i − 1 t − t i − 1 O t i − 1 + 1 Jesse Lansdown m -ovoids of regular near polygons 12 / 18

  21. Sketch of proof d ( x , z ) = i − 1 , | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| =? t + 1 Γ 1 ( z ) i m i i − 1 z x i − 2 i − 1 i − 2 i − 1 t − t i − 1 O t i − 1 + 1 Jesse Lansdown m -ovoids of regular near polygons 12 / 18

  22. Sketch of proof d ( x , z ) = i − 1 , | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| = ( t − t i − 1 )( m − 1) t + 1 Γ 1 ( z ) i m i i − 1 z x i − 2 i − 1 i − 2 i − 1 t − t i − 1 O t i − 1 + 1 Jesse Lansdown m -ovoids of regular near polygons 12 / 18

  23. Sketch of proof d ( x , z ) = 1 , | Γ i − 1 ( z ) ∩ Γ i ( x ) ∩ O| =? Jesse Lansdown m -ovoids of regular near polygons 13 / 18

  24. Sketch of proof d ( x , z ) = 1 , | Γ i − 1 ( z ) ∩ Γ i ( x ) ∩ O| =? Harder - can’t just take points on lines through z . Jesse Lansdown m -ovoids of regular near polygons 13 / 18

  25. Sketch of proof d ( x , z ) = 1 , | Γ i − 1 ( z ) ∩ Γ i ( x ) ∩ O| =? Harder - can’t just take points on lines through z . Obtain an iterative formula, t − t i − 1 t i − 1 + 1 m − t − t i − 1 | Γ i − 1 ( z ) ∩ Γ i ( x ) ∩ O| = p 1 t i − 1 + 1 | Γ i − 2 ( z ) ∩ Γ i − 1 ( x ) ∩ O| i − 1 , i − 2 Jesse Lansdown m -ovoids of regular near polygons 13 / 18

  26. Sketch of proof d ( x , z ) = 1 , | Γ i − 1 ( z ) ∩ Γ i ( x ) ∩ O| =? Harder - can’t just take points on lines through z . Obtain an iterative formula, t − t i − 1 t i − 1 + 1 m − t − t i − 1 | Γ i − 1 ( z ) ∩ Γ i ( x ) ∩ O| = p 1 t i − 1 + 1 | Γ i − 2 ( z ) ∩ Γ i − 1 ( x ) ∩ O| i − 1 , i − 2 And after manipulation: � i ( − m + s + 1) � � − 1 � m − s | Γ i − 1 ( z ) ∩ Γ i ( x ) ∩ O| = p 1 s i , i − 1 s + 1 � i ( − m + s + 1) � � � − 1 m − s = k i − 1 ( t − t i − 1 ) s t + 1 s + 1 = k i − 1 ( t − t i − 1 ) � m � s i − 1 + ( − 1) i − 2 � + ( − 1) i − 1 � . s i − 1 ( t + 1) s + 1 Jesse Lansdown m -ovoids of regular near polygons 13 / 18

  27. Sketch of proof Summing the terms: � � | Γ i − 1 ( z ) ∩ Γ i ( x ) ∩ O| + | Γ 1 ( z ) ∩ Γ i ( x ) ∩ O| z ∈O∩ Γ 1 ( x ) z ∈O∩ Γ i − 1 ( x ) � � � i − 1 � − 1 = mk i − 1 ( t − t i − 1 ) 2 m − 1 + ( s − 2 m + 2) . s + 1 s Jesse Lansdown m -ovoids of regular near polygons 14 / 18

  28. Sketch of proof Equating the two counts “ y then z ” and “ z then y ”: ( t i − 1 + 1) s 2 + ( − 1) i s i � � � i � � 2( t i + 1) ms − ( s + 1 − 2 m ) � − 1 1 − s ( t i + 1)( s + 1) � i − 1 � − 1 = 2 m − 1 + ( s − 2 m + 2) . s Jesse Lansdown m -ovoids of regular near polygons 15 / 18

Recommend


More recommend