m 2018
play

M 2018 Hecke Relations in Rational Conformal Field Theory (with - PowerPoint PPT Presentation

M 2018 Hecke Relations in Rational Conformal Field Theory (with Y. Wu, arXiv:1804.06860) Jeff Harvey University of Chicago INTRODUCTION This talk concerns a new relation between characters of two-dimensional rational conformal field


  1. M ∩ Φ 2018 Hecke Relations in Rational Conformal Field Theory (with Y. Wu, arXiv:1804.06860) Jeff Harvey University of Chicago

  2. INTRODUCTION This talk concerns a new relation between characters of two-dimensional rational conformal field theory (RCFT) given by Hecke operators. The relation generalizes previously known Galois symmetry relations between the representations of the modular group provided by RCFT characters. I will discuss these new relations, explain how they explain a number of scattered results in the literature and present some possible applications.

  3. Examples: The Yang-Lee model is a non-unitary minimal model M (5 , 2) (RCFT) with two independent characters χ Y L = q − 1 / 60 X c Y L ( n ) q n 0 0 n =0 1 / 5 = q 11 / 60 X χ Y L c Y L 1 / 5 ( n ) q n n =0 Affine is a unitary rational CFT with two G 2 independent characters χ G 2 = q − 7 / 60 X c G 2 0 ( n ) q n 0 n =0 χ G 2 c G 2 17 / 60 = q 17 / 60 X 17 / 60 ( n ) q n n =0 Although apparently unrelated, there is a subtle relation between the character coefficients:

  4. DATA coefficients of q expansion of coefficients of q expansion of h=1/5 character of vacuum character of affine G2 at Yang-Lee model c=-22/5 level one (c=14/5) divided by 7 Discrepancy 2 6 20 50 120 261 3858/7 1/7 1091 2108 3917 7118 12587 21854 1/7 260072/7 62202 102428 166450 266850 422966 662780 1/7 7198178/7 1579853 2406046 3633082 5443362 8094202 11952388 122716344/7 2/7

  5. RCFT M H = N i, ¯ Hilbert space: i V i ⊗ V ¯ i Representation of chiral i, ¯ i algebra, e.g. Virasoro for minimal models χ i ( τ ) = Tr V i q L 0 − c/ 24 , q = e 2 π i τ Characters: X Partition N i, ¯ Z ( τ ) = i χ i ( τ ) χ ¯ i ( τ ) function: i ∈ ¯ i ∈ I , ¯ I Examples: Ising model, Yang-Lee model, affine Lie algebras, Monster VOA, BM VOA

  6. CH icdVDLSgMxFM3UV62vqks3wSK0UMpMKWpdFbvQR cVrRU7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tSyVCiUkNCybklYcUYZSTmqa katAEuR7jNS9fn k12+IVFTwCz0ISN HXU47FCNtpFay4MqeOILnlXQ+6/pI9zwvuh5moCtpt6eRlOIWnlTSPAtnbnmYaSVTdq5oO8V9B/4mTs4eIwWmqLaSb25b4NAnXGOGlGo4dqCbEZKaYkaGCTdUJEC4j7qkYShHPlHNaPzdEO4ZpQ07QpriGo7VrxMR8pUa+J7pHJ2ofnoj8S+vEerOYTOiPAg14XiyqBMyqAUcRQXbVBKs2cAQhCU1t0LcQxJhbQJNmB mn8L/S 2fK+acs0KqdDxNIw52wC5IAwc gBI4BV QAxjcgQfwBJ6te+vRerFeJ60xazqzDb7Bev8E1B+gxg= </latexit><latexit sha1_base64="BhjtHVsdlC237hC L4NqwqandwM=">A uK1hY7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tKyVCiUkVCyZk3UOKM pJV PNSD2QBPkeIzWvXxr5tRsiFRX8Ug8C0vR l9MOxUgbqZXcd2VPHMOLcjqfdX2ke54X Q8z0JW029NISnELT8tpnoUztzTMtJIpO1ewncKBA38TJ2ePkQJTVFrJN7ctcOgTrjFDSjUcO9DNCElNMSPDhBsqEiDcR13SMJQjn6hmNP5uCPeM0oYdIU1xDcfq14kI+UoNfM90jk5UP72R+JfXCHXnqBlRHoSacDxZ1AkZ1AKOo JtKgnWbGAIwpKaWyHuIYmwNoEmTAizT+H/pJrPFXLOuZ0qnkzTiIMdsAvSwAGHoAjOQAVUAQZ34AE8gWfr3nq0XqzXSWvMms5sg2+w3j8B0t+gwg= </latexit><latexit sha1_base64="BhjtHVsdlC237hC L4NqwqandwM=">A <latexit sha1_base64="BhjtHVsdlC237hC L4NqwqandwM=">A CH icdVDLSgMxFM3UV62vqks3wSK0UMpMKWpdFbvQR cVrRU7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tSyVCiUkNCybklYcUYZSTmqa katAEuR7jNS9fn k12+IVFTwCz0ISN HXU47FCNtpFay4MqeOILnlXQ+6/pI9zwvuh5moCtpt6eRlOIWnlTSPAtnbnmYaSVTdq5oO8V9B/4mTs4eIwWmqLaSb25b4NAnXGOGlGo4dqCbEZKaYkaGCTdUJEC4j7qkYShHPlHNaPzdEO4ZpQ07QpriGo7VrxMR8pUa+J7pHJ2ofnoj8S+vEerOYTOiPAg14XiyqBMyqAUcRQXbVBKs2cAQhCU1t0LcQxJhbQJNmB mn8L/S 2fK+acs0KqdDxNIw52wC5IAwc gBI4BV QAxjcgQfwBJ6te+vRerFeJ60xazqzDb7Bev8E1B+gxg= </latexit> CH icdVDLSgMxFM3UV62vqks3wSK0UMpMKWpdFbvQR cVrRU7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tSyVCiUkNCybklYcUYZSTmqa katAEuR7jNS9fn k12+IVFTwCz0ISN HXU47FCNtpFay4MqeOILnlXQ+6/pI9zwvuh5moCtpt6eRlOIWnlTSPAtnbnmYaSVTdq5oO8V9B/4mTs4eIwWmqLaSb25b4NAnXGOGlGo4dqCbEZKaYkaGCTdUJEC4j7qkYShHPlHNaPzdEO4ZpQ07QpriGo7VrxMR8pUa+J7pHJ2ofnoj8S+vEerOYTOiPAg14XiyqBMyqAUcRQXbVBKs2cAQhCU1t0LcQxJhbQJNmB mn8L/S 2fK+acs0KqdDxNIw52wC5IAwc gBI4BV QAxjcgQfwBJ6te+vRerFeJ60xazqzDb7Bev8E1B+gxg= </latexit><latexit sha1_base64="BhjtHVsdlC237hC L4NqwqandwM=">A CH icdVDLSgMxFM3UV62vqks3wSK0UMpMKWpdFbvQR cVrRU7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tSyVCiUkNCybklYcUYZSTmqa katAEuR7jNS9fn k12+IVFTwCz0ISN HXU47FCNtpFay4MqeOILnlXQ+6/pI9zwvuh5moCtpt6eRlOIWnlTSPAtnbnmYaSVTdq5oO8V9B/4mTs4eIwWmqLaSb25b4NAnXGOGlGo4dqCbEZKaYkaGCTdUJEC4j7qkYShHPlHNaPzdEO4ZpQ07QpriGo7VrxMR8pUa+J7pHJ2ofnoj8S+vEerOYTOiPAg14XiyqBMyqAUcRQXbVBKs2cAQhCU1t0LcQxJhbQJNmB mn8L/S 2fK+acs0KqdDxNIw52wC5IAwc gBI4BV QAxjcgQfwBJ6te+vRerFeJ60xazqzDb7Bev8E1B+gxg= </latexit><latexit sha1_base64="BhjtHVsdlC237hC L4NqwqandwM=">A CH icdVDLSgMxFM3UV62vqks3wSK0UMpMKWpdFbvQR cVrRU7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tSyVCiUkNCybklYcUYZSTmqa katAEuR7jNS9fn k12+IVFTwCz0ISN HXU47FCNtpFay4MqeOILnlXQ+6/pI9zwvuh5moCtpt6eRlOIWnlTSPAtnbnmYaSVTdq5oO8V9B/4mTs4eIwWmqLaSb25b4NAnXGOGlGo4dqCbEZKaYkaGCTdUJEC4j7qkYShHPlHNaPzdEO4ZpQ07QpriGo7VrxMR8pUa+J7pHJ2ofnoj8S+vEerOYTOiPAg14XiyqBMyqAUcRQXbVBKs2cAQhCU1t0LcQxJhbQJNmB mn8L/S 2fK+acs0KqdDxNIw52wC5IAwc gBI4BV QAxjcgQfwBJ6te+vRerFeJ60xazqzDb7Bev8E1B+gxg= </latexit><latexit sha1_base64="BhjtHVsdlC237hC L4NqwqandwM=">A CH icdVDLSgMxFM3UV62vqks3wSK0UMpMKWpdFbvQR cVrRU7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tSyVCiUkNCybklYcUYZSTmqa katAEuR7jNS9fn k12+IVFTwCz0ISN HXU47FCNtpFay4MqeOILnlXQ+6/pI9zwvuh5moCtpt6eRlOIWnlTSPAtnbnmYaSVTdq5oO8V9B/4mTs4eIwWmqLaSb25b4NAnXGOGlGo4dqCbEZKaYkaGCTdUJEC4j7qkYShHPlHNaPzdEO4ZpQ07QpriGo7VrxMR8pUa+J7pHJ2ofnoj8S+vEerOYTOiPAg14XiyqBMyqAUcRQXbVBKs2cAQhCU1t0LcQxJhbQJNmB mn8L/S 2fK+acs0KqdDxNIw52wC5IAwc gBI4BV QAxjcgQfwBJ6te+vRerFeJ60xazqzDb7Bev8E1B+gxg= </latexit><latexit sha1_base64="BhjtHVsdlC237hC L4NqwqandwM=">A CH icdVDLSgMxFM3UV62vqks3wSK0UMpMEbWuil3o uKjoqdoWTStA3NJEOSUcrQF3Hjq7hxoeLGnW9jWhX8PRA4nJOQe78o4Uwb131 Jianpmdm5+ZzC/nFpeXCSv5My1QR6hPJpbqIsKacCeobZji9SBTFc TpedQ/GPXnV1RpJsWpGSQ0jHFXsA4j2NioVdgKVE/uoZN6sVoOYmx6UZRdDksoUKzbM1gpeY0O60VR p/twbDUKmy4lZr 1bY9 Nt4FXesDfhQo1V4CdqSpDEVhnCsd NzExNmWBlGOB3mglT BJM+7tKmtQLHVIfZeLsh2rRJG3WkskcYNE6/vshwrPUgjuzN0Yj6ZzcK/+qaqensh kTSWqoIO8fdVKOjEQjVKjNFCWGD6zBRDE7KyI9rDAxFmjOQvjcFP1v/GqlVvGOXZiDNViHIniwA/twBA3wgcAN3MEDPDq3zr3z9E5rwvnAtgrf5Dy/Ae9Knz8=</latexit><latexit sha1_base64="KkA5wAkoMhmkzueHke6M8h/Y+84=">A CEXicdZDNSgMxFIXv+G+tWt26CYrQ ikzRdS6Elzo CEXicbZDNSgMxFIXv+G+tOrp1ExSh VJmiuDPSnChCxeK1oqdoWTStA3NJEOSUcrQF3Hjq7hxoeLGnW9jplZQ64HAxzkJufdECWfaeN6HMzU9Mzs3v7BYWCour6y6a8UrLVNFaJ1ILtV1hDXlTNC6Y bT60R HEecNqL+UZ43bqnSTIpLM0hoGO uYB1GsLFWy90JVE8eoIvTUq0SxNj0oi 7GZ RoFi3Z7BS8g4dn5ZEBX2nR8Ny 93yqt5IaBL8MWzBWGct9z1oS5LGVBjCsdZN30tMmGFlGOF0WAhSTRNM+rhLmxYFjqkOs9F2Q7RtnTbqSGWPMGjk/nyR4VjrQRzZm/mI+m+Wm/9lzdR09sKMiSQ1VJCvjzopR0aivCrUZo Sw cWMFHMzopIDytMjC20YEvw/648CfVadb/qn3uwABuwCSXwYRcO4QTOoA4E7uERnuHFeXCenNevtqac W3r8EvO2yeB+p7x</latexit><latexit sha1_base64="chj4k1mwUrWTHNLUzeTuqRwySMU=">A B2HicbZDNSgMxFIXv1L86Vq1rN8EiuCozbtSd4MZlBc W2qFkMnfa0ExmSO4IpfQFXLhRfDB3vo3pz0KtBwIf5yTk3pOUSloKgi+vtrW9s7tX3/cPGv7h0XGz8WSLygiMRKEK0 u4RSU1RiRJYa80yPNEYTeZ3C3y7jMaKwv9SNMS45yPtMyk4OSszrDZCtrBUmwTwjW0YK1h83OQFqLKUZNQ3Np+GJQUz7ghKRTO/UFlseRiwkfYd6h5j aeLcecs3PnpCwrjDua2NL9+WLGc2une Ju5pzG9m+2MP/L+hVl1/FM6rIi1GL1UVYpRgVb7MxSaVCQmjrgwkg3KxNjbrg 14zvOgj/brwJ0WX7ph0+BFCHUziDCwjhCm7hHjoQgYAUXuDNG3uv3vuq pq37uwEfsn7+AaqKYoN</latexit><latexit sha1_base64="2Iil23aRIqBgaCUcmEQ1g3yPkdQ=">A CH icdVDLSgMxFM3UV62vqks3wSK0UMpMKWpdFbvQR cVrRU7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tSyVCiUkNCybklYcUYZSTmqa katAEuR7jNS9fn k12+IVFTwCz0ISN HXU47FCNtpFay4MqeOILnlXQ+6/pI9zwvuh5moCtpt6eRlOIWnlTSPAtnbnmYaSVTdq5oO8V9B/4mTs4eIwWmqLaSb25b4NAnXGOGlGo4dqCbEZKaYkaGCTdUJEC4j7qkYShHPlHNaPzdEO4ZpQ07QpriGo7VrxMR8pUa+J7pHJ2ofnoj8S+vEerOYTOiPAg14XiyqBMyqAUcRQXbVBKs2cAQhCU1t0LcQxJhbQJNmB mn8L/S 2fK+acs0KqdDxNIw52wC5IAwc gBI4BV QAxjcgQfwBJ6te+vRerFeJ60xazqzDb7Bev8E1B+gxg= </latexit><latexit sha1_base64="X/BbP QRM1pmBhxdK1enSbL+gJw=">A CH icdVDLSgMxFM3UV62vqks3wSK0UMpMKWpdFbvQR cVrRU7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tSyVCiUkNCybklYcUYZSTmqa katAEuR7jNS9fn k12+IVFTwCz0ISN HXU47FCNtpFay4MqeOILnlXQ+6/pI9zwvuh5moCtpt6eRlOIWnlTSPAtnbnmYaSVTdq5oO8V9B/4mTs4eIwWmqLaSb25b4NAnXGOGlGo4dqCbEZKaYkaGCTdUJEC4j7qkYShHPlHNaPzdEO4ZpQ07QpriGo7VrxMR8pUa+J7pHJ2ofnoj8S+vEerOYTOiPAg14XiyqBMyqAUcRQXbVBKs2cAQhCU1t0LcQxJhbQJNmB mn8L/S 2fK+acs0KqdDxNIw52wC5IAwc gBI4BV QAxjcgQfwBJ6te+vRerFeJ60xazqzDb7Bev8E1B+gxg= </latexit><latexit sha1_base64="BhjtHVsdlC237hC L4NqwqandwM=">A CH icdVDLSgMxFM3UV62vqks3wSK0UMpMKWpdFbvQR cVrRU7pWTStA3NJEOSUcrQH3Hjr7hxoeLGheDfmL7A54ELh3Pu5d57vIBRpW37w4rNzS8sLsWXEyura+sbyc2tSyVCiUkNCybklYcUYZSTmqa katAEuR7jNS9fn k12+IVFTwCz0ISN HXU47FCNtpFay4MqeOILnlXQ+6/pI9zwvuh5moCtpt6eRlOIWnlTSPAtnbnmYaSVTdq5oO8V9B/4mTs4eIwWmqLaSb25b4NAnXGOGlGo4dqCbEZKaYkaGCTdUJEC4j7qkYShHPlHNaPzdEO4ZpQ07QpriGo7VrxMR8pUa+J7pHJ2ofnoj8S+vEerOYTOiPAg14XiyqBMyqAUcRQXbVBKs2cAQhCU1t0LcQxJhbQJNmB mn8L/S 2fK+acs0KqdDxNIw52wC5IAwc gBI4BV QAxjcgQfwBJ6te+vRerFeJ60xazqzDb7Bev8E1B+gxg= </latexit><latexit sha1_base64="BhjtHVsdlC237hC L4NqwqandwM=">A Modular Properties Characters are weakly holomorphic weight zero vector- valued modular functions transforming according to ρ : SL (2 , Z ) → GL ( n, C ) ✓ 0 ◆ ✓ 1 ◆ − 1 1 ( τ → − 1 / τ ) S = T = ( τ → τ + 1) 1 0 0 1 ( ρ ( S )) 2 = ( ρ ( S ) ρ ( T )) 3 = C C 2 = 1 (Bantay) N = order( ρ ( T )) Γ ( N ) ⊂ ker( ρ ) ⇢✓ ◆ � a b Γ ( N ) = ∈ SL (2 , Z ) | a = d = 1 mod N, b = c = 0 mod N c d

Recommend


More recommend