✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Low-Rank Decomposition of Multi-Way Arrays: A Signal Processing Perspective Nikos Sidiropoulos Dept. ECE, TUC-Greece & UMN-U.S.A nikos@telecom.tuc.gr ✫ ✪ 1
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Contents ❏ Introduction & motivating list of applications ❏ 3-way arrays: similarities and differences with matrices ❏ Rank, and low-rank decomposition; 3-way notation ❏ Closer look at applications: Data modeling ❏ Uniqueness ❏ Algorithms ❏ Performance ❏ Web pointers ❏ What lies ahead & wrap-up ✫ ✪ 2
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Acknowledgments ❏ 3-way Students: X. Liu (U. Louisville), T. Jiang (KTH) ❏ 3-way Collaborators: R. Bro (Denmark), J. ten Berge, A. Smilde (Netherlands), R. Rocci (Italy), A. Gershman, S. Vorobyov, Y. Rong (Canada & Germany) ❏ Sponsors: NSF CCR 9733540, 0096165, 9979295, 0096164; ONR N/N00014-99-1-0693; DARPA/ATO MDA 972-01-0056; ARL C & N CTA Cooperative Agreement DADD19-01-2-0011 ✫ ✪ 3
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain List of Applications - I ❏ Blind multiuser detection-estimation in DS-CDMA, using Rx antenna array ❏ Multiple-invariance sensor array processing (MI-SAP) ❏ Joint detection-estimation in SIMO/MIMO OFDM systems subject to CFO, using receive diversity ❏ Multi-dimensional harmonic retrieval w/ applications in DOA estimation and wireless channel sounding ❏ Blind decoding of a class of linear space-time codes ❏ 3-D Radar clutter modeling and mitigation ❏ Exploratory data analysis: clustering, scatter plots, multi-dimensional ✫ ✪ scaling 4
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain List of Applications - II ❏ Joint diagonalization problems (symmetric): i) Blind spatial signature estimation from covariance matrices, using time-varying power loading, spectral color / multiple lags ii) Blind source separation for multi-channel speech signals iii) ACMA ❏ HOS-based parameter estimation and signal separation (“super-symmetric”) ❏ Analysis of individual differences (Psychology) ❏ Chromatography, spectroscopy, magnetic resonance, ... ✫ ✪ 5
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Three-Way Arrays ❏ Two-way arrays, AKA matrices: X : = [ x i , j ] : ( I × J ) ❏ Three-way arrays: [ x i , j , k ] : ( I × J × K ) ❏ CDMA w/ Rx Ant array @ baseband: chip × symbol × antenna ❏ MI SAP: subarray × element × snapshot ❏ Multiuser MIMO-OFDM: antenna × FFT bin × symbol ❏ Spectroscopy, NMR, Radar, analysis of food attributes (judge × attribute × sample), personality traits ... ✫ ✪ 6
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Three-Way vs Two-Way Arrays - Similarities ❏ Rank := smallest number of rank-one “factors” (“terms” is probably better) for exact additive decomposition (same concept for both 2-way and 3-way) ❏ Two-way rank-one factor: rank-one MATRIX outer product of 2 vectors (containing all double products) ❏ Three-way rank-one factor: rank-one 3-WAY ARRAY outer product of 3 vectors (containing all triple products) - same concept ✫ ✪ 7
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Three-Way vs Two-Way Arrays - Differences ❏ Two-way ( I × J ) : row-rank = column-rank = rank ≤ min ( I , J ) ; ❏ Three-way: row-rank � = column-rank � = “tube”-rank � = rank ❏ Two-way: rank(randn(I,J))=min(I,J) w.p. 1; ❏ Three-way: rank(randn(2,2,2)) is a RV (2 w.p. 0.3, 3 w.p. 0.7) ❏ 2-way: rank insensitive to whether or not underlying field is open or closed (I R versus C ); 3-way: rank sensitive to I R versus C ❏ 3-way: Except for loose bounds and special cases [Kruskal; J.M.F. ten Berge], general results for maximal rank and typical rank sorely missing for decomposition over I R; theory more developed for decomposition over C [Burgisser, Clausen, Shokrollahi, Algebraic complexity theory , Springer, Berlin, 1997] ✫ ✪ 8
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Khatri-Rao Product ☞ Column-wise Kronecker Product: 5 20 15 40 5 10 1 2 25 60 A = B = A ⊙ B = 15 20 , , 3 4 15 40 25 30 45 80 75 120 vec ( ADB T ) = ( B ⊙ A ) d ( D ) A ⊙ ( B ⊙ C ) = ( A ⊙ B ) ⊙ C ✫ ✪ 9
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain LRD of Three-Way Arrays: Notation • Scalar: F ∑ x i , j , k = i = 1 , ··· , I , j = 1 , ··· , J , k = 1 , ··· , K a i , f b j , f c k , f , f = 1 • Slabs: X k = AD k ( C ) B T , k = 1 , ··· , K • Matrix: X ( KJ × I ) = ( B ⊙ C ) A T • Vector: � X ( KJ × I ) � x ( KJI ) : = vec = ( A ⊙ ( B ⊙ C )) 1 F × 1 = ( A ⊙ B ⊙ C ) 1 F × 1 ✫ ✪ 10
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain LRD of N-Way Arrays: Notation • Scalar: F N ∑ ∏ a ( n ) x i 1 , ··· , i N = i n , f f = 1 n = 1 • Matrix: A ( N ) � T X ( I 1 I 2 ··· I N − 1 × I N ) = � A ( N − 1 ) ⊙ A ( N − 2 ) ⊙···⊙ A ( 1 ) �� • Vector: � X ( I 1 I 2 ··· I N − 1 × I N ) � x ( I 1 ··· I N ) : = vec = A ( N ) ⊙ A ( N − 1 ) ⊙ A ( N − 2 ) ⊙···⊙ A ( 1 ) � � 1 F × 1 ✫ ✪ 11
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Closer look at applications: Data modeling ❏ CDMA: ( i , j , k , f ) : (Rx antenna, symbol snapshot, chip, user) F ∑ x i , j , k = i = 1 , ··· , I , j = 1 , ··· , J , k = 1 , ··· , K a i , f b j , f c k , f , f = 1 ❏ MI-SAP: A is response of reference subarray, B T is temporal signal matrix (usually denoted S ), D k ( C ) holds the phase shifts for the k -th displaced but otherwise identical subarray: X k = AD k ( C ) B T , k = 1 , ··· , K ❏ Blind signature estimation from covariance data: Symmetric PARAFAC/CANDECOMP (INDSCAL): R k = AD k ( P ) A H , k = 1 , ··· , K ✫ ✪ 12
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Early Take-Home Point SYMBOL + = X CODE STEERING = + X ☞ Fact 1: Low-rank matrix (2-way array) decomposition not unique for rank > 1 ☞ Fact 2: Low-rank 3- and higher-way array decomposition (PARAFAC) is unique under certain conditions ✫ ✪ 13
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain LRD of Matrices: Rotational Indeterminacy X = AB T = a 1 b T 1 + ··· + a r X b T r X r X ∑ x i , j = a i , k b j , k k = 1 = � + � + � + � + � + = � + ✫ ✪ 14
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Reverse engineering of soup? ☞ Can only guess recipe ✫ ✪ 15
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Sample from two or more Cooks! ☞ Same ingredients, different proportions ֒ → recipe! ✫ ✪ 16
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain SIMO OFDM / CFO ❏ Collect K OFDM symbol snapshots Y i = PF H H i ( QS ) T + W i = : AD i B T + W i , i = 1 , ··· , I ❏ PARAFAC model (w/ special structure) = ⇒ blindly identifiable [Jiang & Sidiropoulos, ’02] ❏ Deterministic approach, works with small sample sizes (channel coherence), relaxed ID conditions, performance within 2 dB from non-blind MMSE clairvoyant Rx ✫ ✪ 17
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain SIMO-OFDM / CFO - results N=32, K= 50, L=4, I=2 0 10 −1 10 −2 10 BER −3 10 Perfect CSI with unknown 20% CFO error Perfect CSI with unknown 2% CFO error PARAFAC 20% CFO error −4 10 PARAFAC 2% CFO error Perfect CSI with known 20% CFO error Perfect CSI with known 2% CFO error −5 10 2 4 6 8 10 12 14 16 SNR(dB) ✫ ✪ 18
✬ ✩ TUC & UMN Nikos Sidiropoulos / SAM 2004, July 18-21, 2004, Sitges, Barcelona, Spain Uniqueness = + X ☞ [Kruskal, 1977], N = 3 , I R: k A + k B + k C ≥ 2 F + 2 k-rank= maximum r such that every r columns are linearly independent ( ≤ rank) ☞ [Sidiropoulos et al , IEEE TSP, 2000]: N = 3, C ☞ [Sidiropoulos & Bro, J. Chem., 2000]: any N , C : ∑ N n = 1 k − ranks ≥ 2 F +( N − 1 ) ✫ ✪ 19
Recommend
More recommend